文章编号:0258-0926(2014)S2-0056-04; doi: 10.13832/j. jnpe. 2014. S2. 0056

氟盐球床堆中钍铀的基本物理参量研究

朱贵凤^{1,2}, 邹 杨^{1,3}, 徐洪杰^{1,3}

1. 中国科学院上海应用物理研究所,上海,201800;2. 中国科学院大学,北京,100049; 3. 中国科学院核辐射与核能技术重点实验室,上海,201800

摘要:通过计算氟盐球床堆单球栅元物理模型,分析不同 C/U、C/Th 和不同燃耗深度下钍及铀球的中子 产能、单位铀累积中子产量、单位钍累积中子销量等基本性质。结果表明,C/Th 取 80 较为合适, 钍燃耗深 度范围为 140~200 MW ·d/kg(Th);C/U 取 400~600 范围较为合适,铀燃耗深度范围为 180~200 MW ·d/kg(U); 堆芯径向选择 Th-U-Th 布置较为合理。

关键词:钍;氟盐;球床堆;转化;中子产能 中图分类号:TL32 文献标志码:A

Study on Basic Neutron Physical Parameters of Thorium-Uranium Used in Pebble Bed Fluoride Salt-Cooled High Temperature Reactor

Zhu Guifeng^{1, 2}, Zou Yang^{1, 3}, Xu Hongjie^{1, 3}

1. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China; University of Chinese Academy of Sciences, Beijing, 100049, China;
Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai, 201800, China

Abstract: By analyzing the energy production per neutron, neutron cumulative production per uranium and neutron cumulative sales per thorium in unit cell of Pebble Bed Fluoride Salt-cooled High Temperature Reactor (PB-FHR), some basic neutron physical parameters are determined. For the optimal choice, C/Th ratio is about 80, and the discharge burnup of thorium is between 140~200 MW d/kg(Th); C/U ratio is between 400~600, and the discharge burnup of uranium is between 180~200 MW·d/kg(U). It is beneficial to set the core radial layout as thorium-uranium-thorium pattern.

Key words: Thorium, Fluoride salt, Pebble bed reactor, Transformation, Energy production per neutron

0 引 言

氟盐球床堆[1]采用陶瓷型包覆燃料颗粒,能 实现较高燃耗深度,是开式循环用钍的适合堆型。 PREX-2 实验表明, 球在球床堆内可以径向自然 分区流动,因此堆芯径向可被划分成钍区和铀区。 钍在氟盐球床堆中的利用研究涉及如下变量:钍 区与铀区的 C/重金属(HM)、钍区与铀区布置 及体积比、钍区滞留时间、铀区滞留时间、各区 的卸料燃耗深度等。Cisneros^[2]分析了氟盐球床堆 中不同铀卸料燃耗深度和钍卸料燃耗深度情况下 最大有效燃耗深度,结果表明,采用钍可使得有

效卸料燃耗深度达到 252 MW · d/kg(U), 且反射 层快中子辐照注量更低。

本文通过建立单球栅元物理模型,对 C/U、 C/Th、钍铀各自卸料燃耗深度及焚烧比例等物理 参量进行分析,为氟盐球床堆堆芯设计提供思路 及优化方向。

1 计算思路

铀燃料在燃耗前期同时产生能量和除维持链 式反应以外富余的中子。产能一般用燃耗深度来 衡量,对于中子产量,本文用单位质量铀累积中

收稿日期:2014-10-27;修回日期:2014-12-10

作者简介:朱贵凤(1987—),男,博士研究生,现主要从事反应堆物理研究工作

子产量(NPM)衡量,燃耗t时刻的计算公式为:

$$N(t) = \int_{0}^{t} \frac{P(\tau) \cdot \upsilon(\tau) \left[1 - \frac{1}{k(\tau)} \right]}{Q(\tau) M N_{\rm A} 1.6 \times 10^{-19}} d\tau \qquad (11)$$

式中, N 为单位质量铀累积中子产量, mol/kg; P为功率, MW; υ 为平均每次裂变中子数; Q 为 平均每次裂变能, MeV; k 为无限增殖系数; M为初装载铀燃料质量, kg; N_A 为阿伏伽德罗常数; τ 为时间积分变量, $0 < \tau < t$ 。

高燃耗铀燃料处于次临界状态时,需要低燃 耗铀燃料补充中子。该过程涉及中子与能量的转 化,本文用中子产能(EPN)来评价,定义为单 位中子补充给高燃耗铀燃料栅元所释放的能量, 燃耗 t 时刻的计算公式为:

$$E_{\rm U}(t) = \frac{Q(t)}{\upsilon(t) \left[\frac{1}{k(t)} - 1\right]}, k(t) < 1$$
 (2)

式中, E为中子产能, MeV。

针增殖燃料与处于次临界状态的铀燃料类似, 不同之处是,某燃耗时刻针增殖燃料 EPN 应该是 整个燃耗段内平均的结果,计算公式为:

$$E_{\rm Th}(t) = \frac{\int_{0}^{t} P(\tau) d\tau}{\int_{0}^{t} \frac{P(\tau) \cdot \upsilon(\tau) \left[\frac{1}{k(\tau)} - 1\right]}{Q(\tau)} d\tau}$$
(3)

针增殖燃料的累积中子销量同样通过式(1) 计算,因为 *k*<1,所以 NPM 一直为负。

如果存在某一时刻, 针增殖燃料的 EPN 比高 燃耗铀燃料的 EPN 大,则此时用针增殖燃料代替 高燃耗铀燃料将产生更多的能量。定义有效燃耗 深度为单位质量铀产生的所有能量, 假设此时针 燃料的燃耗深度为 $B_{\rm Th}$, 铀燃料的燃耗深度为 $B_{\rm U}$, 需要提供给单位质量钍的中子为 $N_{\rm Th}$, 单位质量 铀燃料能够提供的中子为 $N_{\rm U}$,则有效燃耗深度 ($B_{\rm E}$)为:

$$B_{\rm E} = B_{\rm U} + B_{\rm Th} \cdot N_{\rm U} / N_{\rm Th}$$
 (4)

堆芯尺寸在 100 m³以上,假设有 3%的泄漏 率,则式(1)~式(3)中 *k* 值改为 *k*-0.03。

NPM 受 C/HM 影响很大。本文分 2 步寻找最 大有效燃耗深度: (1) 首先分析单个钍燃料栅元在不同 C/Th、 不同钍卸料燃耗深度下的 *E*_{Th},并确定最大 *E*_{Th}和 对应的 *B*_{Th}和 *N*_{Th}。

(2)其次计算铀燃料栅元不同 C/U 下、不同 铀卸料燃耗深度时的 N_U和 E_U。通过与钍燃料栅 元最大 E_{Th}比较,确定不同 C/U 比下铀的卸料燃 耗深度,根据此时铀卸料燃耗深度确定铀燃料栅 元的 N_U。根据供需平衡关系,即可确定钍与铀的 焚烧比例。

2 程序和模型介绍

燃耗计算程序采用笔者编写的 MCNP5 与 ORIGEN2 耦合程序 MOBAT。燃耗计算采用固定 注量率计算模式,选取辐照注量率为 5 × 10¹³ cm⁻²·s⁻¹。

单球(钍燃料球及铀燃料球)栅元计算模型 采用六棱柱结构,燃料球填充度为60%,包覆燃 料颗粒(TRISO)在燃料球内采用简立方排列(图 1),球相关参数见表1^[3],铀燃料富集度为19.9%。

图 1 单栅元模型及 TRISO 粒子结构 Fig. 1 Unit Cell Model and TRISO Structure

表1	单球栅元相关参数
Table 1	Parameters of Unit Cell

组成	几何参数	材料	密度 /g·cm ⁻³	温度 /				
燃料核	直径 425 μm	UO ₂ /ThO ₂	10.50/9.86	800				
碳缓冲层	厚度 100 µm	疏松碳	1.87	800				
内热解碳层	厚度 35 µm	热解碳	3.20	800				
碳化硅层	厚度 35µm	碳化硅	1.87	800				
外热解碳层	厚度 35 µm	热解碳	1.87	800				
基质	半径 2.5 cm	石墨	1.60	750				
球壳层	厚度 0.5 cm	石墨	1.74	700				
冷却剂	_	2LiF-BeF ₂	1.96	655				

注:2LiF-BeF2中⁶Li 浓度为 4×10⁻⁶

3 结果及其分析

3.1 钍栅元燃耗分析

钍栅元无限中子倍增因子(k_{inf})随燃耗变化

先迅速增加,然后再缓慢下降(图 2),最大约 为 0.91,此时 C/Th 最佳,约为 80。由于钍俘获 截面很小,氟盐存在明显的中子吸收效应(图 3)。 C/Th 等于 100 时,前期中子吸收比较明显,但后 期可以压低在 5%左右。

不同 C/Th、不同燃耗深度下 E_{Th} 和 N_{Th} 见图 4、图 5,结果考虑了 3%的泄漏率。C/Th 为 80、燃耗深度在 160 MW · d/kg(Th)左右时,钍的 E_{Th} 最大,约为 425 MeV;之后,由于裂变产物的累积和钍的消耗,中子利用价值缓慢降低,但在 140~200 MW·d/kg(Th)区间基本变化不大。钍栅元 在起始阶段中子吸收量很大,之后近似线性增

长, C/Th为80、燃耗深度为160 MW · d/kg(Th) 时 N_{Th}约 0.339 mol/kg(Th)。

3.2 铀栅元燃耗分析

图 6 给出了不同 C/U 下 *k*_{inf} 随燃耗变化的结 果。C/U 越大,前期累积的中子越多,C/U 约 600 时达到饱和,但是后期 *k*_{inf} 下降更快。原因在于 C/U 大,抑制了²³⁸U 的共振俘获吸收,所以前期 富余中子多,而后期因为²³⁵U 过多消耗,²³⁹Pu 产量又低,使得中子消耗很快。

图 6 铀栅元不同 C/U 下 k_{inf} 随燃耗深度的变化 Fig. 6 k_{inf} vs Burnup with Different C/U

随着燃耗增加 N_U 开始不断上升,在 k_{inf} 小于 1 之后开始不断下降,最后中子完全自产自销时, 达到连续在线换料的卸料燃耗深度(图 7)。最 大卸料燃耗深度约 250 MW · d/kg(U),此时 C/U 在 300~400 之间。

 $C/U 越大, E_U 随燃耗下降得越快,此时钍代$ $替高燃耗铀的效果更佳(图8)。从<math>E_{Th}$ 的最大值 425 MeV 可以确定铀燃料的卸料燃耗深度,根据 N_U 和 N_{Th} [0.339 mol/kg(Th)]可计算最大有效燃耗 深度。结果见表 2。

表 2 结果表明, C/U 增大, 有利于提高有效 燃耗深度,当 C/U 在 400 以上,增加幅度变小, 在 600 时渐近饱和。

图 8 铀栅元不同 C/U 下 E_U 随燃耗深度的变化 Fig. 8 E_U vs Burnup with Different C/U

表 2 不	<同 C/U 下最大有效卸料燃耗深度
Table 2	Effective Burnup with Different C/U

C/U	600	500	400	300	200	100		
铀燃耗/ MWd·kg ⁻¹ (U)	182	188	198	200	167	85		
$N_{\rm U}$ /mol·kg ⁻¹ (U)	0.29	0.27	0.22	0.15	0.04	0		
$B_{\rm E}/{\rm MW} \cdot {\rm d} \cdot {\rm kg}^{-1}({\rm U})$	318	316	301	270	188	85		

值得注意的是,上述分析做了一个粗略近似, 认为铀提供的中子和钍需要的中子是等价的。事 实上,在堆芯内,铀区中子能谱趋向软化,钍区 中子能谱趋向硬化,铀区提供的中子不如钍区本 身产生的中子价值大,最大有效燃耗深度容易被 高估。

3.3 堆芯布置方案分析

堆芯设计将径向分成 3 个区,从内到外依次 是高燃耗钍区、铀区、低燃耗钍区。其中内圈钍 区体积很小。低燃耗钍区置于径向外圈的原因有: 可以避免中子的浪费,钍区在外层可以阻碍中 子的泄漏; 延长反射层寿命, 钍区设置在外层 降低了快中子对反射层的辐照损伤; ²³³Pa 半衰 期为 27.3 d, 外圈中子注量率相对低, 有利于其 衰变成 ²³³U。

在内圈设置小体积高燃耗钍区的原因有: 提高钍对中子的利用效率,内圈钍区体积小,受 铀区能谱影响大,可以在燃耗末期充分焚烧²³³U; 铀区中心区域功率密度最大,用低功率密度的 钍区代替可以降低堆芯功率峰因子。

4 结束语

通过单球栅元物理模型分析了不同 C/HM、 不同燃耗深度下中子产能、单位铀累积中子产量、 单位钍累积中子销量等基本性质。对氟盐球床堆 堆芯优化计算可提供如下参数范围及参考方向:

(1)根据钍球栅元计算结果,氟盐球床堆中的 C/Th 取 80 左右较为合适,卸料燃耗深度范围为 140~200 MW · d/kg(Th)。

(2) 根据铀球栅元计算结果,氟盐球床堆中的 C/U 取 400~600 范围较为合适,卸料燃耗深度 范围为 180 ~200 MW · d/kg(U)。

(3)为了最大化利用中子和降低对反射层的 中子辐照,低燃耗钍区置于外圈;为了充分焚烧 高燃耗的钍燃料并降低功率峰因子,堆芯内圈设 置小体积的高燃耗钍区;铀区位于中间。

参考文献:

- Forsberg Charles W, Peterson P F, Kochendarfer R A. Design options for the advanced high-temperature reactor [C]. Proceedings of ICAPP'08. Analeim, CA USA, June 8-12, 2008.
- [2] Anselmo T Cisneros, Greenspan Ehud, Peterson Per. Use of thorium blankets in a pebble bed advanced high temperature reactor [C]. Proceedings of ICAPP '10. San Diego, CA, USA, June 13-17, 2010.
- [3] Fratoni Massimiliano. Development and applications of methodologies for the neutronic design of the Pebble Bed Advanced High Temperature Reactor(PB-AHTR)
 [D]. California: University of California, Berkeley. 2008.

(责任编辑:马 蓉)