文章编号:0258-0926(2014)S2-0159-05; doi: 10.13832/j. jnpe. 2014. S2. 0159

⁷LiH 材料热中子散射数据研究

王 佳^{1,2}, 宋红州^{1*}, 叶 涛¹, 胡泽华¹, 孙伟力¹

1. 北京应用物理与计算数学研究所,北京,100094;2. 中国工程物理研究院中子物理学重点实验室,四川绵阳,621900

摘要:基于热中子散射理论,编制热中子散射数据计算程序 Sirius。采用基于密度泛函理论的第一原理 冻结声子方法,得到⁷LiH 中⁷Li和 H 的声子态密度。利用 Sirius 程序和声子态密度,获取⁷LiH 的热中子散 射数据。理论分析表明,获得的数据合理。

关键词:热中子散射理论;声子态密度;热中子散射数据;⁷LiH 中图分类号:O571.42+1 文献标志码:A

Study on Thermal Neutron Scattering Data for ⁷LiH

Wang Jia^{1,2}, Song Hongzhou^{1*}, Ye Tao¹, Hu Zehua¹, Sun Weili¹

Institute of Applied Physics and Computational Mathematics, Beijing, 100094, China;
 Key Laboratory of Neutron Physics, CAEP, Mianyang, Sichuan, 621900, China

Abstract: Based on the theory of thermal neutron scattering, a new code named Sirius was developed to produce the thermal scattering law data. Frequency distributions of ⁷Li and ¹H bound in ⁷LiH were calculated by first-principles with the frozen-phonon approach. These frequency distributions were utilized in Sirius code to get the thermal scattering law data for ⁷LiH. Theoretical analysis indicated that the thermal scattering law data is reasonable.

Key words: Theory of thermal neutron scattering, Frequency distribution, Thermal scattering law data, 7 LiH

0 引 言

我国建立的贫化铀和氢化锂球壳的聚变裂变 混合能源堆包层模拟装置中,LiH 材料的成份为: ⁷LiH,90.3%;⁶LiH,8.7%;杂质,1%^[1]。大体 积氢化锂球壳中的大量氢原子对经贫化铀部分慢 化之后的中子多次弹性散射之后可能形成一定份 额的热中子,需考虑LiH 材料的热中子散射影响。

目前国外发布的评价数据库 ENDF/B- .0^[2]、 JENDL4.0^[3]、Rosfond2010、JEFF3.1^[4]都包含独立 的热中子散射子库(tsl);IAEA 核数据库也提供 了热中子散射数据,总共有23种材料数据,其中 并无 LiH 材料数据。对 LiH 材料热中子散射数据 的研究,仅见的公开报道是文献[5-6]。1993年美国 brookhaven 实验室通过实验和理论分析获取了 ⁷LiH 的声子能态密度,并采用 GASKET 程序计 算⁷LiH 的热中子散射数据;2013年,中国西北 核研所通过第一性原理 CASTEP 程序计算声子能 态密度,再采用 LEAPR 程序计算热中子散射数据。

为得到正确的热中子散射数据,材料声子能 态密度研究必不可缺。目前对 LiH 分子、晶体的 电子结构、基态结构和势能函数方面的研究已见 诸报道^[7-9],但这些研究工作主要集中在通过研究 LiH 的晶体结构和电子结构,对其稳定性、腐蚀 性、热力学性质进行讨论。

收稿日期:2014-10-20;修回日期:2014-12-25

基金项目:中国工程物理研究院中子物理学重点实验室基金(2013BA01)

作者简介:王 佳(1980—),女,副研究员,2005年获硕士学位,现主要从事核反应理论和核数据研究工作

^{*}通讯作者:宋红州, E-mail: song_hongzhou@iapcm.ac.cn

为得到⁷LiH 的热中子散射数据,本研究编制 了热中子散射数据计算程序,开展 LiH 材料的声 子色散关系、声子能态密度研究。

1 热中子散射理论

1.1 热中子散射公式

从中子散射角分布公式出发,可得到中子和 原子核在单晶情况下非布拉菲晶体的相干弹性散 射双微分截面为:

$$\left(\frac{\mathrm{d}^{2} \sigma}{\mathrm{d} \,\Omega \,\mathrm{d} \,E'}\right)_{\mathrm{el,coh}} = \frac{2\pi^{2} \sigma_{\mathrm{coh}}}{v_{0}} \exp\left(-4E_{i}W\right) \times \delta\left(E-E'\right) \sum_{\tau} \delta\left(\kappa-\tau\right) \left|F\left(N\right)\right|^{2} \quad (1)$$
$$\left|F\left(N\right)\right|^{2} = \left|\sum_{j=1}^{N} \exp\left[i2\pi\left(hx_{j}+ky_{j}+lz_{j}\right)\right]\right|^{2}$$
$$W = \frac{1}{Ak_{\mathrm{B}}T} \int_{0}^{\beta_{\mathrm{max}}} \frac{1}{\beta_{\mathrm{s}}} \coth\left(\frac{\beta_{\mathrm{s}}}{2}\right) \rho\left(\beta_{\mathrm{s}}\right) \mathrm{d}\beta_{\mathrm{s}}$$

式中, σ_{coh} 为相干散射截面; κ 是散射矢量, $\kappa = k - k'$;k和k'分别为入射中子、出射中子的 波矢;E和E'分别为入射中子、出射中子能量; E_i 为布拉格阈值; τ 为晶体倒空间矢量,对 τ 的求 和范围为 $\tau < \tau_{max}$; v_0 为晶体正空间内原胞体积; F(N)为晶体结构因子;N为晶胞中原子个数; x_j 、 y_j 、 z_j 为晶胞中j原子的位置参数;W为 Debye-waller 系数; k_B 为玻尔兹曼常数;T为材 料温度;A是靶核质量与中子质量之比; β_s 为声 子能量; $\rho(\beta_s)$ 为声子能态密度。

不相干弹性散射双微分截面为:

$$\left(\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}\Omega\mathrm{d}E'}\right)_{\mathrm{el,inc}} = \frac{\sigma_{\mathrm{inc}}}{4\pi} \exp\left[-2WE\left(1-\mu\right)\right]\delta\left(E-E'\right)$$
(2)

积分后得到不相干弹性散射截面公式为:

$$\sigma_{\rm el,inc} = \frac{\sigma_{\rm inc}}{4EW} [1 - \exp(-4EW)]$$
 (3)

式中, σ_{inc} 为不相干散射截面, μ 为实验室系下 中子散射角余弦值。

非布拉菲晶体的相干非弹性散射进行声子展 开后双微分截面为:

$$\left(\frac{\mathrm{d}^2\sigma}{\mathrm{d}\varOmega\,\mathrm{d}\,E^{'}}\right)_{\mathrm{inl,coh}\pm 1}$$

$$= \frac{\pi^{2} \sigma_{\text{coh}}}{M v_{0}} \frac{\mathbf{k}}{\mathbf{k}} \exp\left(-2W_{d}\right) \sum_{j,\bar{q},\tau} \left|F(N)\right|^{2} \frac{\kappa^{2}}{3\omega_{j}} \times \left[\left\langle n_{j}\right\rangle \delta\left(\omega+\omega_{j}\right) \delta\left(\mathbf{\kappa}+\mathbf{q}-\boldsymbol{\tau}\right)+ \left\langle n_{j}+1\right\rangle \delta\left(\omega-\omega_{j}\right) \delta\left(\mathbf{\kappa}-\mathbf{q}-\boldsymbol{\tau}\right)\right] \quad (4)$$

式中, ω 为角频率;q为本征模式的波矢量; exp($-2W_d$)为 debye-waller 因子。

不相干弹性散射双微分截面为:

$$\left(\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}\Omega\mathrm{d}E'}\right)_{\mathrm{inl,inc}} = \frac{\sigma_{\mathrm{inc}}}{4\pi k_{\mathrm{B}}T} \frac{k'}{k} \exp(-\frac{\beta}{2}) S_{n}\left(\alpha,\beta,T\right) (5)$$

式中, $\alpha = (\vec{E} + E - 2\mu\sqrt{EE})/Ak_{\rm B}T$ 表示中子动量 转移; $\beta = (\vec{E} - E)/k_{\rm B}T$ 表示中子能量转移。

$$S_{n}(\alpha,\beta,T) = \exp\left(\frac{\beta}{2}\right) \frac{1}{2\pi} \exp(-2W_{d}) \times \int_{-\infty}^{+\infty} \exp(i\beta \hat{t}) \exp(-2V + d\hat{t})$$
(6)

$$=\alpha\int_{-\infty}^{+\infty}\frac{\rho(\beta_s)}{\beta_s}\frac{\exp(-\beta_s/2)}{2\sinh(\beta_s/2)}\exp(-i\beta_s\hat{t})d\beta_s$$
$$2W_d = \alpha\int_{0}^{\beta_{\max}}\frac{1}{\beta_s}\coth\left(\frac{\beta_s}{2}\right)\rho(\beta_s)d\beta_s$$

式中
$$\hat{t} = (k_B T/\hbar)t$$
 t 为时间, exp < UV > 可展开为:
exp < UV >= 1+ < UV > +1/2! < UV >² +
 $\dots + 1/p! < UV >^{p} + \dots$

式中,右边第一项为0声子过程即弹性散射;第 二项为1 声子过程; p 表示 p 声子过程,多声子 展开过程均为非弹性散射。

热中子散射的总效果为相干部分和不相干部 分之和。在相干效应比较弱的情况下,可以忽略 不同核在不同时间的位置关联,即采用不相干近 似方法,最终得到弹性散射和非弹性散射截面公 式;其形式与式(3)、式(4)和式(5)形式相 同,仅公式中的 σ_{inc} 变为 $\sigma_b = \sigma_{coh} + \sigma_{inc}$ 。

从声子展开式可知,当 α 值很大时,展开式 收敛很慢或者发散,不再适合用于计算 $S_n(\alpha,\beta,T)$ 值,此时采用短时间碰撞近似:

$$S(\alpha,\beta,T) = \frac{1}{\sqrt{\frac{4\pi\alpha T_{\text{eff}}}{T}}} \exp\left\{-\left[\frac{(\alpha-|\beta|)^2 T}{4\alpha T_{\text{eff}}} + \frac{|\beta|}{2}\right]\right\}$$
(7)

式中,Teff为有效温度:

$$T_{\rm eff} = \frac{T}{2\omega_s} \int_0^{\beta_{\rm max}} \beta \coth \frac{\beta}{2} \rho(\beta) d\beta$$

1.2 材料相干性判断

¹H 和 ⁷Li 的束缚核散射截面数据见表 1^[10]。 ¹H 处于不同自旋时对应的散射长度差异很大,系统相干性小,总散射截面主要是不相干截面。⁷Li 不相干截面略大于相干截面。在计算中对 ¹H 和 ⁷Li 均采用不相干近似处理。

表1 束缚核散射截面

Table 1 Bound Scattering Cross Section					
核素	相干截面/10 ⁻²⁸ m ²	不相干截面/10 ⁻²⁸ m ²			
$^{1}\mathrm{H}$	1.7583	80.27			
⁷ Li	0.619	0.78			

2 ¹LiH 材料声子能态密度

基于密度泛函理论^[11-12]的第一原理冻结声子 方法^[13]对⁷LiH声子谱及态密度进行计算。在利用 冻结声子法计算声子谱和声子态密度时,超原胞 大小的选取很大程度上决定了计算的精确度。分 别计算2×2×2,3×3×3,4×4×4超原胞对结果 的影响,结果显示当超原胞为4×4×4时计算结果 已收敛;计算中考虑了均匀电场对晶格振动的影 响,在Brillouin区Γ点处声子频率发生LO-TO劈裂 效应。图1为计算时采用的⁷LiH超原胞结构;由于 ⁷LiD和⁷LiH结构相同,从⁷LiD色散关系计算结果 和实验数据的比对可知,⁷LiH声子谱计算结果也 合理正确,图2为⁷LiD的声子谱色散关系。最终用 于热中子散射数据计算的⁷LiH中¹H和⁷Li的声子 能态密度如图3。

3 ⁷LiH 材料热中子散射数据

 $^{7}LiH材料的热中子散射数据分为^{7}LiH中^{1}H和$ $^{7}Li, 计算程序采用自主开发的Sirius程序。 ¹H$

Fig. 2 Calculated Dispersion Relations of ⁷LiD at 300 K A---声学支; O---光学支; T---横波; L---纵波

图 3 ⁷LiH 中 ¹H 和 ⁷Li 的声子态密度(300 K) Fig. 3 Frequency Distribution of ¹H/⁷Li in ⁷LiH at 300 K

的自由原子散射截面为 $20.478 \times 10^{-28} \text{m}^2$, ⁷Li 的自由原子散射截面为 $1.07 \times 10^{-28} \text{m}^2$, 计算中声 子展开到 200 项。从 $\alpha = 78.2913$ 取值时 1 声子展 开和多声子展开计算所得的 $S(\alpha,\beta)$ 数据可以看 出, α 取值越大,需要的声子数展开越多;因此 当 α 值很大时,直接通过声子展开不再适合用于 计算 $S_n(\alpha,\beta,T)$ 值,应采用短时间碰撞近似。图 4 和图 5 分别是 ⁷LiH 中 ¹H 和 ⁷Li 的热中子散射截 面结果,图中同时给出了和自由气体近似处理的 差别。表 2 是本文计算的 ⁷LiH 中 ¹H 的 Debye-Waller 系数及有效温度与相关数据的对 比;由于散射模型描述方式相同,计算结果的差 异主要源于声子态密度不同。

4 聚变源模型计算

聚变裂变混合能源堆包层模拟装置的聚变源简化 模型示于图 6,考察⁷LiH 热中子散射数据对装置 内中子注量率的影响。模型共有 8 个区,从里至 外分别为:空气、贫化铀、氢化锂(3 层)、聚 乙烯(2 层)、铁,中心为聚变源。

图 4 ⁷LiH 中 ¹H 的热中子散射截面 (300 K) Fig. 4 Neutron Scattering Cross Sections for ¹H in ⁷LiH at 300 K

图 5 ⁷LiH 中 ⁷Li 的热中子散射截面 (300 K) Fig. 5 Neutron Scattering Cross Sections for ⁷Li in ⁷LiH at 300 K

表 2 ⁷LiH 中 ¹H 的 Debye-Waller 系数及有效温度 Table 2 Effective Temperatures and Debye-Waller

Coefficient for ¹ H in ⁷ LiH								
温度/K	有效温度/K		Debye-waller 积分					
	计算值	文献[7]	文献[8]	计算值	文献[7]	文献[8]		
50	624.17	674.1	611.3	9.85	9.31	10.09		
100	624.3	674.4	611.5	9.99	9.40	10.23		
200	628.1	683.6	615.8	10.45	9.77	10.69		
300	647.1	694.1	636.1	11.22	10.39	11.50		
400	685.8	727.4	676.3	12.32	11.31	12.66		
500	740.4	779.9	732.2	13.67	12.54	14.09		
600	806.4	836.3	799.1	15.20	13.76	15.69		
800	959.7	988.2	954.0	18.57	16.84	19.23		

图 6 简化的聚变源模型 Fig. 6 Simplified Fusion Source Model

氢化锂区(3、4、5 区)采用两种成分:一 种是纯⁷LiH,另一种是⁷LiH 质量分数为90.3%, ⁶LiH 质量分数为8.7%;计算时均采用⁷LiH 的热 中子散射数据。3~5 区中,含⁶Li时,5 eV 以下 的中子占此区内总注量率的4.2%;不含⁶Li时3~5 区5 eV 以下的中子占此区内总注量率的73%。

由于⁶Li 在低能处的中子反应截面很大,所 以系统中含有 8.7%的⁶LiH 时低能中子注量率会 锐减。含⁶LiH 成分时,⁷LiH 采用热中子散射数 据和自由气体近似时,氢化锂区的中子注量率在 中子能量低于 0.1 eV 时有一定差异。

5 结论与探讨

基于热中子散射原理开发热中子散射数据计 算程序 Sirius,在此基础上计算了⁷LiH 的热中子 散射数据。计算中采用基于密度泛函理论的冻结 声子方法获取⁷LiH 中⁷Li和¹H 的声子态密度; 计算得到的 Debyer-waller 积分以及有效温度与文 献[5-6]中⁷LiH 研究的结果有一定的差异。将温度 为 300 K 时⁷LiH 中¹H 和⁷Li 的热中子散射数据 用于聚变裂变混合能源堆包层模拟装置的简化聚 变源模型,显示出了与自由气体近似处理的差别。 自由气体近似只是最简化粗糙的热中子散射处理 方式,将本文得到的⁷LiH 热中子散射数据用于实 际工程分析,可提高模拟计算的精度。

对 ZrH 材料的热中子散射数据分析表明^[14], 由于材料的金属性,实验数据在低能入射情况下 显示出相干结构峰值,考虑 Zr 的相干散射,会使 计算结果和实验符合更好。⁷LiH 也存在 ⁷Li 的相 干散射问题,但 ⁷Li 的总散射截面远小于 ¹H,影 响不会很大,可开展实验后再根据实验结果作进 一步分析。

参考文献:

- [1] 王新华,郑普,刘荣,等. 贫化铀、贫化铀/氢化锂
 组合装置的泄漏中子能谱[J]. 核技术,2011,34(10):
 750.
- [2] Chadwick M B, Oblozinsky P, Herman M, et al. ENDF/ B- .0: Next generation evaluated nuclear data library for nuclear science and technology[J]. Nuclear Data sheets, 2006, 107: 2931-3060.
- [3] Keiichi Shibata, Osamu Iwamoto, Tsuneo Nakagawa, et al. JEDNL-4.0: A New Library for Nuclear Science and Engineering[J]. Journal of Nuclear Science and Technology, 2011, 48 (1): 1-30.
- [4] Arjan Koning, Robin Forrest, Mark Kellett, et al. The

JEFF-3.1 Nulcear Data Library[R]. JEFF Report 21, 2006.

- [5] Said Mughabghab, Eldon Schmidt, Hans Ludewig, et al. Generation of neutronic thermal data in support of space nuclear propulsion[R]. BNL-48540,1993.
- [6] Lipeng Wang, Xinbiao Jiang, Zhumin Zhao, et al. Investigation of thermal neutron scattering cross sections for LiH [J]. Nucl Eng Design, 2013, 262: 365-370.
- [7] Shalabi A S. The point charge model applied to LiH crystal surface imperfections[J]. J Molccular (Theochem), 1995, (331): 195-198.
- [8] 罗德礼,蒙大桥,朱正和.LiH、LiO和LiOH的分析势 能函数与分子反应动力学[J].物理学报,2003,52 (10): 2438-2442.
- [9] 蔡军,薛卫东,邹乐西.LiH 晶体的几何结构及电子结构[J].四川师范大学学报,2005,28 (4): 459-462.
- [10] Koester L. The Special Feature section of neutron scattering lengths and cross sections of the elements and

their isotopes[J]. Neutron News, 1992, 3(3): 29-37.

- [11] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys Rev. B 54, 1996: 11169.
- [12] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys Rev B, 1999, 59: 1758.
- [13] Togo A, Oba F, Tanaka I, First-principles calculations of the ferroelastic transition between rutile-type and CaCl₂-type SiO₂ at high pressures [J]. Phys Rev B, 2008,78: 134106.
- [14] Matters M, Keinert J. Thermal neutron scattering data for the moderator materials H_2O , D_2O and ZrH_x in ENDF-6 format and as ACE library for MCNP(X) Codes[R]. INDC(NDS)-0470, 2005.

(责任编辑: 左成元)