2016年10月

文章编号:0258-0926(2016)05-0046-05;doi:10.13832/j.jnpe.2016.05.0046

通过监测 Cs 快速定位破损燃料组件的方法

孙寿华,李 健^{*},朱 磊,李子彦

中国核动力研究设计院,成都,610213

摘要:从燃料元件内生成 ^{137}Cs 、 ^{134}Cs 的核反应过程出发,建立精确的数学物理模型,得到反应堆一回路冷却剂中 ^{137}Cs 、 ^{134}Cs 放射性活度与燃料组件内 ^{235}U 燃耗关系的精确解和简化解。分别给出了简化解、ORIGEN2.0 计算结果和精确解的比较。研究表明:只要通过化学测量得到反应堆一回路中 ^{134}Cs 与 ^{137}Cs 的活度比($R_{\rm Cs}$),即可由本文建立的精确解模型计算得到破损燃料元件的燃耗值,从而达到快速定位破损燃料元件的目的。

关键词:¹³⁷Cs;¹³⁴Cs;放射性活度;燃料组件;²³⁵U燃耗 中图分类号:TL326 文献标志码:A

Research on Rapid Location of Ruptured Fuel Element by Cs Detection

Sun Shouhua, Li Jian^{*}, Zhu Lei , Li Ziyan

Nuclear Power Institute of China, Chengdu, 610213, China

Abstract: Based on the nuclear reaction of ¹³⁷Cs and ¹³⁴Cs in the fuel assembly, the accurate mathematical and physical calculation models were established. The exact and simplified solutions of relationships between radioactivity of the two nuclides in the primary coolant and burn-up of ²³⁵U in the fuel assembly were obtained. The comparisons of simplified solution, ORIGEN2.0 calculation result and exact solution were carried out as well. The result showed that, if only the R_{Cs} , ratio of ¹³⁴Cs/¹³⁷Cs in the primary coolant, is obtained by hydrochemistry measurement, burn-up of the ruptured fuel assembly can be calculated with the analytical solution model, so as to locate the ruptured fuel assembly rapidly.

Key words: ¹³⁷Cs, ¹³⁴Cs, Radioactivity, Fuel assembly, Burn-up of ²³⁵U

0 引 言

在反应堆运行中,当燃料组件包壳发生破损 时,裂变产物会直接从缺陷处释放到一回路冷却 剂中,引起冷却剂中的放射性水平升高;当放射 性水平升高到一定限值时必须停堆。因此,一旦 燃料组件发生破损,快速定位破损燃料组件具有 非常重要的意义。燃料组件是否破损主要依靠探 测关键核素的γ放射性来实现。建立一回路冷却 剂中关键核素的放射性活度与燃料组件燃耗的关

系是定位破损燃料组件的重要方法。

由于¹³⁴Cs 和¹³⁷Cs 具有高裂变产额、半衰期 适中、不会大量沉积、极易透过包壳进入主回路 的特点,常被作为监测燃料元件破损、分析破损 燃料元件燃耗的主要核素。文献[1]中应用 ORIGEN2.0 程序计算结果,得到了船用反应堆一 回路冷却剂水中¹³⁷Cs、¹³⁴Cs 放射性活度与破损燃 料组件燃耗的关系曲线;文献[2-3]中通过简化建 立粗略的模型进行分析,认为¹³⁷Cs、¹³⁴Cs 的放射

收稿日期:2015-11-17;修回日期:2016-04-09

作者简介:孙寿华(1964—),男,研究员,现从事反应堆工程与安全研究工作

^{*}通迅作者:李 健, Email:lijian9001@163.com

性活度与燃耗的一次方、二次方分别成正比,¹³⁷Cs 的放射性活度与燃耗近似成正比。文献[1-2]中的 方法和结果都具有很强的近似性,无法推广应用。 本文从¹³⁷Cs 和¹³⁴Cs 生成的核反应过程出发,通 过建立精确的物理数学模型,得到冷却剂中¹³⁷Cs 和¹³⁴Cs 的放射性活度与破损燃料组件燃耗之间 的通用关系式和简化关系式,为快速定位破损燃 料组件找到了一种方法。

1 计算模型的建立

由于燃料组件中 95%以上的裂变都是 235 U 产 生的,而 235 U、 239 Pu 和 241 Pu 等 3 种核素每次裂 变生成 137 Cs、 134 Cs 的产额基本相同,因此假设 137 Cs、 134 Cs 全部来自于 235 U 的裂变。

1.1 ¹³⁷Cs 活度与燃耗的关系

¹³⁷Cs 直接来自于 ²³⁵U 的裂变 ,同时又不断发 生衰变。¹³⁷Cs 产额的计算模型为:

$$\frac{dN_{235}}{dt} = -\sigma_{a,^{235}U} \phi N_{235}U$$
 (1)

$$\frac{dN_{137}C_{\rm S}}{dt} = \gamma_{137}C_{\rm S}\Sigma_{\rm f,^{235}U}\phi - (\sigma_{\gamma,^{137}C_{\rm S}}\phi + \lambda_{137}C_{\rm S})N_{137}C_{\rm S}$$
(2)

式中, $N_{235_{\rm U}}$ 、 $N_{137_{\rm CS}}$ 分别为燃料组件中²³⁵U和 ¹³⁷Cs的核子密度; $\sigma_{a,^{235}{\rm U}}$ 、 $\sigma_{f,^{235}{\rm U}}$ 分别为²³⁵U微 观吸收、裂变截面; $\Sigma_{f,^{235}{\rm U}} = \sigma_{f,^{235}{\rm U}} N_{235_{\rm U}}$,为²³⁵U 的宏观裂变截面; $\gamma_{137_{\rm CS}}$ 、 $\lambda_{137_{\rm CS}}$ 、 $\sigma_{\gamma,^{137}{\rm CS}}$ 分别为 ¹³⁷Cs 裂变产额、衰变常数、微观俘获截面, ϕ 为 中子注量率。

式(1)、式(2)的初始条件为:

$$N_{235_{\rm U}}(0) = N_0, N_{137_{\rm CS}}(0) = 0$$
 (3)

式中, N_0 代表 ²³⁵U 初始时刻的核子密度。

由式(1)~式(3)解得,燃料组件内¹³⁷Cs 的放射性活度*A*_{137Cs}为:

$$A_{137}_{CS} = \frac{\lambda_{137}_{CS} \gamma_{137}_{CS} \sigma_{f}^{235}_{J} \phi N_{0}}{\sigma_{a}^{235}_{J} \phi - \lambda_{137}_{CS} - \sigma_{\gamma}^{137}_{J} c_{S} \phi} \times \left\{ \exp \left[-(\lambda_{137}_{CS} + \sigma_{\gamma}^{137}_{J} c_{S} \phi)t \right] - \exp(-\sigma_{a}^{235}_{J} \phi t) \right\}$$

$$(4)$$
定义燃料组件中²³⁵U的燃耗为B,由式(1)

定义燃料组件中 ²³³U 的燃耗为 B, 由式 (1) 可得:

$$B = \frac{N_{235_{\rm U}}(0) - N_{235_{\rm U}}(t)}{N_{235_{\rm U}}(0)} = 1 - \exp\left(-\sigma_{a,^{235}_{\rm U}}\phi t\right) \quad (5)$$

由式(5)得到燃料组件中²³⁵U的燃耗和燃料组件运行时间的关系式为:

$$t = -\frac{\ln(1-B)}{\sigma_{a^{235} \cup} \phi}$$
 (6)

将式 (6) 代入式 (4) 得 *A*_{137 Cs} 与燃耗 *B* 之 间的关系式为:

$$A_{137}_{CS} = \frac{\lambda_{137}_{CS} \gamma_{137}_{CS} \sigma_{f,^{235} U} \phi N_{0}}{\sigma_{a,^{235} U} \phi - \lambda_{137}_{CS} - \sigma_{\gamma,^{137}_{CS}} \phi} \times \left\{ \exp \left[\frac{(\lambda_{137}_{CS} + \sigma_{\gamma,^{137}_{CS}} \phi)}{\sigma_{a,^{235}_{U}}} \ln(1 - B) \right] - \exp \left[\ln(1 - B) \right] \right\}$$
(7)

式(7)是燃料组件中¹³⁷Cs 活度和燃耗关系的精 确计算模型。由式(7)可见,¹³⁷Cs 的活度与燃 耗、中子注量率存在函数关系。

当 ϕ > 1×10¹³ (cm²·s)⁻¹ 时,由于 $\sigma_{a,^{235}U}$ $\lambda_{_{137}Cs} + \sigma_{\gamma,^{137}Cs}$,对式(7)进行适当的简化,得 到 $A_{_{137}Cs}$ 与燃耗B之间的简化模型为:

$$A_{137}_{\rm CS} = \frac{\lambda_{137}_{\rm CS} \gamma_{137}_{\rm CS} N_0}{1 + \alpha} B \propto B$$
(8)
$$\alpha = \sigma_{a^{235}_{\rm U}} / \sigma_{f^{235}_{\rm U}}$$

由式(8)可见,当 ϕ > 1×10¹³ (cm²·s)⁻¹时, ¹³⁷Cs 的放射性活度与燃料组件的燃耗近似成正 比例关系。

1.2 ¹³⁴Cs 活度与燃耗的关系

生成 ¹³⁴Cs 的途径主要有 2 条: 由 ²³⁵U 裂 变直接生成; ²³⁵U 裂变直接生成 ¹³³I, ¹³³I 衰变 生成 ¹³³Xe, ¹³³Xe 进一步衰变成 ¹³³Cs, ¹³³Cs 发 生辐射俘获反应生成 ¹³⁴Cs^[3]。¹³⁴Cs 的生成链可简 化为如图 1 所示。

1.2.1 ²³⁵U 裂变直接生成 ¹³⁴Cs ²³⁵U 裂变直接 生成 ¹³⁴Cs 的计算模型为:

$$\frac{dN_{235}}{dt} = -\sigma_{a,^{235}U} \phi N_{235}U$$
 (9)

$$\frac{dN_{^{134}Cs}}{dt} = \gamma_{^{134}Cs} \Sigma_{f,^{^{235}U}} \phi - (\lambda_{^{134}Cs} + \sigma_{\gamma,^{^{134}Cs}} \phi) N_{^{134}Cs}$$
(10)

式中, $N_{^{134}Cs}$ 、 $\lambda_{^{134}Cs}$ 、 $\sigma_{\gamma,^{134}Cs}$ 、 $\gamma^{^{134}Cs}$ 分别为燃料 组件中 ^{134}Cs 的核子密度、衰变常数、微观俘获截 面、裂变产额。

初始条件:

$$N_{235_{\rm U}}(0) = N_0, N_{134_{\rm Cs}}(0) = 0$$
 (11)

由式(6)、式(9)、式(10)可解得燃料 组件中¹³⁴Cs放射性活度*A*_{I,¹³⁴Cs}与燃耗*B*之间的关 系式为:

$$A_{I_{1}^{134}Cs} = \frac{\lambda_{134}}{\sigma_{a,^{235}U}} \frac{\varphi_{I_{3}} \sigma_{f_{1}^{235}U}}{\sigma_{a,^{235}U}} \frac{\varphi_{I_{3}} \sigma_{f_{1}^{235}U}}{\sigma_{f_{1}^{234}Cs}} \frac{\varphi_{I_{3}}}{\sigma_{f_{1}^{235}U}} \times \left\{ \exp\left[\frac{\lambda_{134}}{\sigma_{a,^{235}U}} \frac{\varphi_{I_{3}}}{\sigma_{a,^{235}U}} \ln(1-B)\right] - \exp\left[\ln(1-B)\right] \right\}$$
(12)

式(12)即为*A*_{1,¹³⁴Cs}与燃耗关系的精确解计 算模型。由式(12)可见,*A*_{1,¹³⁴Cs}与燃耗、中子 注量率存在函数关系。

$$A_{\rm L^{134}Cs} = \lambda_{\rm ^{134}Cs} \gamma_{\rm ^{134}Cs} N_0 \frac{B}{1+\alpha} \left(1 - \frac{wB}{2(1+\alpha)} \right)$$
(13)

由(13)式可见,*A*_L,_{³⁴Cs}仅与燃耗有关。 1.2.2 ²³⁵U 裂变间接生成 ¹³⁴ Cs ²³⁵U 裂变间接 生成 ¹³⁴Cs 的计算模型为:

$$\frac{dN_{235}}{dt} = -\sigma_{a,^{235}U} \phi N_{235}U$$
 (14)

$$\frac{\mathrm{d}N_{_{133}}}{\mathrm{d}t} = \gamma_{_{133}} \Sigma_{\mathrm{f},^{235}} \psi - \lambda_{_{133}} N_{_{133}}$$
(15)

$$\frac{dN_{133}_{Xe}}{dt} = \lambda_{133}_{I} N_{133}_{I} - \lambda_{133}_{Xe} N_{133}_{Xe}$$
(16)

$$\frac{dN_{133}_{CS}}{dt} = \lambda_{133}_{Xe} N_{133}_{Xe} - \sigma_{\gamma, 133}_{CS} \phi N_{133}_{CS}$$
(17)

$$\frac{\mathrm{d}N_{^{134}\mathrm{Cs}}}{\mathrm{d}t} = \sigma_{\gamma,^{133}\mathrm{Cs}} \phi N_{^{133}\mathrm{Cs}} - \left(\lambda_{^{134}\mathrm{Cs}} + \sigma_{\gamma,^{134}\mathrm{Cs}} \phi\right) N_{^{134}\mathrm{Cs}}$$
(18)

式中, γ_{133} I为 133 I 裂变产额; λ_{133}_{Xe} 为 133 Xe 的衰 变常数; $\sigma_{\gamma,133}$ Cs为 133 Cs 微观俘获截面。

该方程的初始条件为:

$$N_{^{235}\text{U}}(0) = N_0 \qquad (19-1)$$

$$N_{^{133}\text{I}}(0) = N_{^{133}\text{Xe}}(0) = N_{^{133}\text{Cs}}(0) = N_{^{134}\text{Cs}}(0) = 0 \qquad (19-2)$$

求解方程(14)~方程(18)可得燃料组件中 通过间接途径生成的¹³⁴Cs 活度 $A_{1^{34}Cs}$,进而可 得 $A_{1^{34}Cs}$ 与燃耗B关系的精确解计算模型:

$$=\frac{A_{\rm II,^{134}Cs}}{(\lambda_{\rm 133}_{\rm Cs}\lambda_{\rm 133}_{\rm I}-\delta)(\lambda_{\rm 133}_{\rm I}-\delta)(\lambda_{\rm 133}_{\rm Xe}-\delta)(\sigma_{\gamma,^{133}Cs}\phi-\delta)}{(20)}$$

式中, $\delta = \sigma_{a,^{235}U}\phi$; $f(B,\phi)$ 是一个关于燃耗和中 子注量率的函数。

由于存在下列关系:

$$\lambda_{_{133}} \square \lambda_{_{133}}_{Xe} \square \lambda_{_{134}}_{Cs} + \sigma_{_{\gamma,134}}_{Cs} \varphi$$
 (21-1)

 $\sigma_{a,^{235}\mathrm{U}} \square \ \sigma_{\gamma,^{133}\mathrm{Cs}}, \lambda_{^{133}\mathrm{I}} \square \ \sigma_{\mathrm{f},^{235}\mathrm{U}} \varphi$ (21-2)

对式(20)进行适当的简化,得到燃料组件中¹³⁴Cs活度A_{134Cs}的简化计算模型为:

$$A_{\rm II,^{134}Cs} = \frac{\lambda_{\rm 134}{}_{\rm Cs}\gamma_{\rm 133}{}_{\rm I}\lambda_{\rm 133}{}_{\rm I}\sigma_{\gamma,^{133}Cs}N_0}{2\lambda_{\rm 133}{}_{\rm I}\sigma_{q,^{235}\rm II}}B^2$$
(22)

在近似条件下,由式(22)可知,*A*_{,¹³⁴Cs}与燃耗的平方成正比。

1.2.3 ¹³⁴Cs 的总活度 两条链生成的 ¹³⁴Cs 放射 性活度之和 A_{134} S 为:

$$A_{134}_{CS} = A_{I_{c}}^{134}_{CS} + A_{II_{c}}^{134}_{CS}$$
(23)
条结件成的¹³⁴Cs 协助性活度之比为。

两条链生成的 [□]℃s 放射性活度之比为:

$$\frac{A_{\rm IL^{134}Cs}}{A_{\rm L^{134}Cs}} = \frac{\gamma_{133} \sigma_{\gamma,^{133}Cs} (1+\alpha)^{-B}}{\gamma_{134} \sigma_{\chi,^{132}Cs} [2(1+\alpha) - wB] \sigma_{a,^{235}U}}$$
(24)

把 有 关 常 数 代 入 式 (24) 可 知 , *A*_{II,¹³⁴Cs} □ *A*_L¹³⁴Cs</sub> 。因此,实际应用中,可将途径 I 忽略,即认为冷却剂中的¹³⁴Cs 全部来自于¹³³Cs 的(n,γ)反应。

1.3 冷却剂中¹³⁴Cs 和¹³⁷Cs 活度

由于 ¹³⁴Cs、¹³⁷Cs 为同位素,可以认为燃料 组件中的 ¹³⁴Cs、¹³⁷Cs 释放到一回路冷却剂中的份 额相同,则满足如下关系:

$$\left(\frac{A_{134}}{A_{137}}\right)_{\text{coolant}} = \left(\frac{A_{134}}{A_{137}}\right)_{\text{fuel}}$$
(25)

因而,可利用一回路冷却剂中测得的 134 Cs 与 137 Cs 的放射性活度比 $R_{Cs} = A_{134}_{Cs} / A_{137}_{Cs}$ 和精确 解公式(7)和式(20)得到破损燃料组件的燃耗,从而达到对破损组件定位的目的。

R_{Cs}的近似解计算公式为:

$$R_{\rm Cs} = \frac{\lambda_{134}{}_{\rm Cs} \gamma_{133}{}_{\rm I} \sigma_{\gamma,^{133}}{}_{\rm Cs} \left(1 + \alpha\right)}{2\lambda_{137}{}_{\rm Cs} \gamma_{137}{}_{\rm Cs} \sigma_{a}{}^{235}{}_{\rm U}} B \qquad (26)$$

2 在高通量工程试验堆(HFETR)中的 应用

HFETR 采用多层套管型低浓铀燃料组件。利 用组件参数计算程序计算得到的 HFETR 燃料组 件相关截面参数见表 1。

Table1 Fu	Fuel Assembly Nuclear Parameters of HFETR	
核素	物理量	数值
²³⁵ U	$\sigma_{a,^{235}\mathrm{U}}/\mathrm{cm}^2$	441.19×10 ⁻²⁴
	$\sigma_{\rm f,^{235}U}/{\rm cm}^2$	372.31×10 ⁻²⁴
¹³⁷ Cs	$\gamma_{^{137}\mathrm{Cs}}$	6.092×10 ⁻²
	$\lambda_{_{137}Cs}/s^{-1}$	7.284×10 ⁻¹⁰
	$\sigma_{\gamma,^{137}\mathrm{Cs}}/\mathrm{cm}^2$	0.069×10 ⁻²⁴
¹³³ I	$\gamma_{{}^{133}\mathrm{I}}$	6.6 24×10 ⁻²
	$\lambda_{_{133}}$ /s ⁻¹	9.257×10 ⁻⁶
¹³³ Xe	$\lambda_{_{133}}$ Xe/s ⁻¹	1.528×10 ⁻⁶
¹³³ Cs	$\sigma_{\gamma,^{133}\mathrm{Cs}}/\mathrm{cm}^2$	44.10×10 ⁻²⁴
¹³⁴ Cs	$\gamma_{^{134}\mathrm{Cs}}$	1.126×10 ⁻⁶
	$\lambda_{^{134}\mathrm{Cs}}/\mathrm{s}^{-1}$	1.066×10 ⁻⁸
	$\sigma_{\gamma,^{134}\mathrm{Cs}}/\mathrm{cm}^2$	93.77×10 ⁻²⁴

表 1 HFETR 燃料组件相关核参数 Table 1 Fuel Assembly Nuclear Parameters of HFETR

表1中,除微观截面与反应堆有关外,其余 参数均为常数。

2.1 燃料组件中¹³⁷Cs活度

当中子注量率分别为 1×10^{13} (cm²·s)⁻¹ 和 1×10^{14} (cm²·s)⁻¹时, HFETR 燃料组件中 ¹³⁷Cs 活度的解析解和简化解随燃耗变化关系如图 2 所示。

由图 2 可知,在 2 种中子注量率下,¹³⁷Cs 放 射性活度的简化计算结果和解析计算结果符合很

Fig. 2 Comparison between A_{137}_{Ce} and Burn-up

好,最大偏差分别为0.29%和2.89%。

2.2 燃料组件中¹³⁴Cs活度

中子注量率为 1×10¹³ (cm²·s)⁻¹ 和 1×10¹⁴ (cm²·s)⁻¹时,燃料组件中 ¹³⁴Cs 活度的解析解和简 化解随燃耗的变化情况示如图 3 所示。

由图 3 可知,在 HFETR 燃料组件中,当中 子注量率为 1×10^{13} (cm²·s)⁻¹时,¹³⁴Cs 活度的简化 计算与解析计算结果相差很大。在 1×10^{14} (cm²·s)⁻¹ 时,¹³⁴Cs 活度的简化计算与解析计算结果符合得 较好,最大偏差小于 7.93%;当 *B* > 45%时,¹³⁴Cs 活度的简化计算结果略大于解析计算结果,*B* < 45%时,简化计算结果小于解析计算结果。

2.3 ¹³⁴Cs 与 ¹³⁷Cs 活度比值

在中子注量率为 1×10¹⁴ (cm²·s)⁻¹情况下,采用 ORIGEN2.0 程序、本文中的精确解及简化解计 算模型,分别得到了 *R*_{Cs} 与燃料元件燃耗的关系 曲线,见图 4。

由图 4 可知, ORIGEN2.0 计算结果和 R_{Cs}的 解析解相比偏差很大;简化解和 R_{Cs}的解析解相 比仍然具有较大的偏差。因此,对于 HFETR 燃

Fig. 4 Comparison between R_{Cs} and Burn-up

料组件中的 R_{Cs}来说仅能采用解析解进行计算。

3 结 论

(1)本文建立的一回路冷却剂中 *R*_{Cs} 与燃耗 关系的精确解数学模型,对于铀裂变堆具有普遍 的意义。

(2)本文建立的一回路冷却剂中 R_{Cs} 与燃料 组件燃耗之间关系的简化计算公式,在 1×10^{14} (cm^{2} ·s)⁻¹水平时简化解和精确解符合较好。 (3) 对中子注量率达到 1×10^{13} (cm²·s)⁻¹ 水平 的反应堆 , R_{Cs} 与燃料组件燃耗之间的关系必须用 文中建立的精确解模型计算。

(4)工程应用中,只要通过水化学测量得到 反应堆一回路中的 R_{Cs},就可由本文建立的精确解 模型计算得到破损燃料组件的燃耗值,从而达到 快速定位破损燃料组件的目的。

参考文献:

- 杨磊,徐少华.基于剂量监测的船用反应堆破损燃料 元件燃耗分析[J].原子能科学技术,2010,44(8): 974-978.
- [2] 李兰,杨洪润.压水堆核电厂燃料元件破损诊断方法
 [J].核动力工程,2008,29(8):135-139.
- [3] Akihiro SASAHARA. Neutron and gamma ray source evaluation of LWR high burn-up UO₂ and MOX spen[J]. Journal of Nuclear Science and Technology, 2004, 41: 448-456.

(责任编辑:张明军)