2017年2月

文章编号:0258-0926(2017)01-0020-05; doi: 10.13832/j.jnpe.2017.01.0020

空间堆金属锂冷却剂热物性参数 计算模型及程序开发

李华琪¹, 郭啸宇², 杨 宁¹, 朱 磊¹, 马腾跃¹, 胡 攀¹, 田晓艳¹

1. 西北核技术研究所,西安,710024;2. 清华大学工程物理系,北京,100084

摘要:通过文献分析及理论研究建立金属锂热物性参数与温度、压强的函数关系计算模型,并利用 FORTRAN 语言开发金属锂热物性计算程序 SNPS_LITHIUM。开发的计算程序可用于计算固态锂、液态锂和 锂蒸气的热物性参数。

关键词:金属锂;热物性;计算程序;空间堆 中图分类号:TL331 文献标志码:A

Development of Metal Lithium Coolant Thermophysical Properties Calculation Model and Code for Space Reactors

Li Huaqi¹, Guo Xiaoyu², Yang Ning¹, Zhu Lei¹, Ma Tengyue¹, Hu Pan¹, Tian Xiaoyan¹

Northwest Institute of Nuclear Technology, Xi'an, 710024, China;
 Department of Engineering Physics Tsinghua University, Beijing, 100084, China

Abstract: Through literature analysis and theoretical research, a calculation model is established for the function of the metal lithium thermophysical properties and the temperature and pressure. A metal lithium coolant thermophysical properties calculation code SNPS_LITHIUM is developed by using FORTRAN. The SNPS_LITHIUM can be used to calculate the thermophysical properties of metal lithium solid, liquid and steam.

Key words: Metal lithium, Thermal physical properties, Calculation code, Space reactor

0 引 言

金属锂因其密度低、传热性好被广泛用作空间核反应堆的冷却剂,包括液态金属锂直接冷却的空间堆^[1-2]和碱金属锂热管冷却的空间堆^[3-5]。 冷却介质金属锂的热物性是空间堆热工水力设计和安全分析的基础参数。对于金属钠的热物性的研究比较多^[6],而金属锂的热物性参数计算公式和计算程序却不完善且不系统。本文通过文献分析及理论研究建立了金属锂热物性参数与温度、 压强的函数关系计算模型,并利用 FORTRAN 语言开发了金属锂热物性计算程序 SNPS LITHIUM。旨在为金属锂作冷却剂的空间堆及高 温锂热管的热工水力设计及安全分析打下良好的 基础。

- 1 金属锂热物性计算模型
- 1.1 金属锂的基本物性参数
 金属锂的热物性参数见表 1。
- 1.2 金属锂热物性计算模型
- 1.2.1 锂的饱和蒸气压

(1)固态锂:根据文献[8],拟合可得固态锂 的饱和蒸气压与饱和温度的关系为:

收稿日期:2016-03-13;修回日期:2016-07-08

基金项目:国家自然科学基金资助(11375143)

作者简介:李华琪(1989—),男,硕士,现主要从事核反应堆热工水力与安全分析研究工作

表1 金属锂的基本物性参数 Table 1 Basic Properties of Metal Lithium

Tuble 1 Busie Troperties of Medal Elanan	
参数项	参数值
原子量 (M_L) /kg · mol ⁻¹	0.006939
标准工况(压力 101.325 kPa) 下的沸点(T _b)/K	1600.15 ± 10
标准工况(压力 101.325 kPa) 下的熔点(Tm)/K	453.65 ± 0.1
临界温度(T _{c,r})/K	$3503 \pm 10^{[7]}$
临界压力 (P _{c, r}) /MPa	38.42 ± 0.54
临界密度(_{c,r}) /kg・m ⁻³	110.4 ± 0.5

 $\lg P_{\rm s} = 13.483 - 8364.06/T_{\rm s} \tag{1}$

式中, *P*_s为固态锂的饱和蒸气压强, Pa; *T*_s为饱 和温度, K。式(1)适用温度范围为 298.16 K 到 熔点。式(1)计算值与实验值平均相对偏差为± 0.57%。

(2)液态锂和锂蒸气:液态锂的饱和蒸气压 与饱和温度的关系为^[9]:

lg P_{s'} = 12.893 - 8143/T_s (2) 式中, P_{s'}为饱和蒸气压, Pa。式(2)的温度范 围为从熔点到 1200 K。由式(2)得到的计算值 与实验值的偏差较大,平均偏差为±11.3%。在高 温区(>1100 K)平均偏差可降至±5%。

根据文献[7]有:

$$\lg P_{\rm s''} = 17.765 - 8002/T_{\rm s} \tag{3}$$

式中, P_{s"}为锂蒸气的饱和蒸气压, Pa。式(3) 适用于温度范围为 1200~3000 K。由式(3)得 到的计算值与实验值的平均偏差为±0.7%。

1.2.2 锂的密度

(1)固态锂:固态锂的密度与温度的函数关 系为:

$$\rho = \frac{533}{1 + 1.8 \times 10^{-4} (T - 273.15)} \quad (4)$$

式中, 为固态锂的密度,kg/m³, *T* 为绝对温度, K。由式(4)得到的计算值与实验值的平均偏差 为±0.2%。

(2)饱和液态锂和过冷液态锂:根据文献[8], 饱和液态锂和过冷液态锂的密度为:

$$\rho' = 508.7 - 8.25 \times 10^{-2} (T - 453.15)$$
 (5)

式中 , ρ' 为液态锂的密度 , kg/m³。由式 (5) 得 到的计算值与实验值的平均偏差为 ± 0.07%。

(3)饱和锂蒸气。假设饱和锂蒸气为理想气体,根据理想气体状态方程可得:

$$\rho'' = \frac{P_{\rm S}'\overline{M}}{RT} \tag{6}$$

式中, ρ "为饱和锂蒸气密度,kg/m³; P_s "为饱和 锂蒸气的压强,Pa; \overline{M} 为锂蒸气的平均摩尔质量, $\overline{M} = M(N_1 + 2N_2)$,其中M为锂原子摩尔质量, kg/mol; N_1 为Li分子占的百分数; N_2 为Li₂分子 占的百分数, N_1 和 N_2 采用文献[8]数据拟合插值 计算。式(6)与实验值的偏差为±0.26%。

(4) 过热锂蒸气:假设过热锂蒸气为理想气体。根据理想气体状态方程可得如下关系:

$$\frac{\rho_{\rm s}}{\rho_{\rm h}} = \frac{1 + N_{\rm s,2}}{1 + N_2} \frac{T}{T_{\rm s}} \tag{7}$$

式中, ρ_{s} 、 h 分别为饱和锂蒸气、过热锂蒸气的密度; $N_{s,2}$ 为饱和锂蒸气 Li₂分子的摩尔数百分比; $N_{s,2}$ 则根据文献[8]的数据采用线性插值的办法求得。

1.2.3 锂的汽化热 根据文献[8],锂的汽化热计 算公式为:

 $\Delta H_{\rm V} = 4.1868 \times 10^6 (5.25 - 3.65 \times 10^{-4} T)$ (8) 式中, $H_{\rm V}$ 为锂的汽化热, J/kg, 式(8)与实验 值的偏差为±0.4%。

1.2.4 锂的比焓

(1) 固态锂:固态锂的相对比焓使用式(9) 计算^[8]:

$$h_{\rm t} - h_0 = 4186.8 \times (0.839t - 1.103 \times 10^{-4}t^2 + 1.103 \times 10^{-4}t^2)$$

 $+0.264 \times 10^{-5} t^3 - 0.531 \times 10^{-8} t^4)$ (9)

式中, *h*_t为固态锂的比焓, J/kg; *h*₀为0K时固态 锂的比焓; *t*为摄氏温度, ,与实验值的平均相 对平均偏差较大为9.6%。

(2) 饱和液态锂: 饱和液态锂的相对比焓使 用式(10) 计算^[8]:

$$h'_{t} - h_{0} = \begin{cases} 4186.8 \times (76.018 + 1.083t - 1.002 \times 10^{-4}t^{2}), \\ 180.54 \leq t \leq 420 \\ 4186.8 \times (92.304 + 1.005t - 0.864 \times 10^{-5}t^{2}), \\ 420 \leq t \leq 900 \end{cases}$$

(10)

式中, h'_t 为液态锂的比焓, J/kg, 与实验值的平均相对偏差为±0.44%。

(3)饱和锂蒸气:饱和锂蒸气的相对比焓由 饱和液态锂的相对比焓加上锂的汽化热得到:

$$h_{\rm t}'' - h_0 = h_{\rm t}' - h_0 + \Delta H_{\rm V} \tag{11}$$

式中, h"为饱和锂蒸气的焓, J/kg, 与实验值的 平均相对偏差为±0.02%。

(4) 过冷液态锂。过冷液态锂的焓与饱和液态锂的焓差由式(12)计算:

$$dh = c_n dT \Longrightarrow h_1 - h'_1 = c_n \Delta T$$
 (12)

式中, h_1 为过冷液态锂的相对比焓; c_p 为过冷液 态锂的定压热容,根据文献[10],可认为 c_p =4169 J/(kg·K); T为过冷液态锂与相同压强下饱和 液态锂的温差。

(5) 过热锂蒸气: 过热锂蒸气的相对比焓为^[11]:

$$h - h_{\rm s} = \Delta h_2[(x_2) - (x_2)_{\rm s}]$$
 (13)

$$x_2 = \frac{2N_2}{N_1 + 2N_2} \tag{14}$$

式中, $h-h_s$ 为相同温度、不同压强下,过热锂蒸 气与饱和锂蒸气的比焓焓差; h_2 为锂二聚物的 生成比热焓, $h_2 = -1.56 \times 10^7 \text{ J/kg}$; x_2 为锂二聚 物的质量百分比; $(x_2)_s$ 为饱和锂蒸气中锂二聚物 的质量百分比。 N_1 、 N_2 利用文献[8]的数据,采用 线性插值的办法算得。

1.2.5 锂的熵 锂的熵通过文献[8]的数据拟合 计算公式进行计算,限于篇幅,不再赘述。

1.2.6 锂的导热系数

(1)固态锂。固态锂导热系数用式(15)计 算^[12]:

 $\lambda = 44.00 + 0.02019T + 8037/T$ (15) 式中, λ 为固态锂的导热系数, W/(m·K), 适用于 温度从 200~453.7 K, 与实验值的相对偏差为 ± 0.3%。

(2)饱和液态锂和过冷液态锂:饱和液态锂 和过冷液态锂的导热系数使用式(16)拟合^[13]:

 $\lambda' = 21.42 + 0.05230 T - 1.371 \times 10^{-5} T^2$ (16) 式中, λ' 为液态锂的导热系数, W/(m·K), 适用 于温度从 453.7 ~ 1700 K, 与实验值的平均相对偏 差为 ± 2.3%。

(3)饱和锂蒸气和过热锂蒸气:饱和锂蒸气 和过热锂蒸气的导热系数根据文献[7]数据拟合 公式为:

 $\lambda'' = -0.0972705 + 2.6179735 \times 10^{-4} \times T -$

 $1.1311167 \times 10^{-7} \times T^2 + 1.7518819 \times 10^{-11}$ (17) 式中, λ "为饱和锂蒸气的导热系数, W/(m·K), 此式适用于温度从 1000 ~ 3000 K, 与实验值的平 均相对偏差为 ± 0.85%。 1.2.7 锂的动力粘度系数

(1)液态锂:液态锂的动力粘度系数用式(18) 计算:

$$\lg \eta' = \begin{cases} -1.5064 - 0.7368 \lg T + 109.95/T \\ (485.15 \text{ K} \le T \le 973.15 \text{ K}) \\ 726.07/T - 4.338 \\ (973.15 \text{ K} \le T \le 1473.15 \text{ K}) \end{cases}$$
(18)

式中, η' 为动力粘度系数,Pa·s,计算值与实验 值的平均偏差为-0.6%。

(2)饱和锂蒸气和过热锂蒸气:饱和锂蒸气 和过热锂蒸气的动力粘度系数根据文献[7]数据 拟合公式为:

 $\eta'' = 59.013 + 0.0673 \times T - 1.31 \times 10^{-5} T^2$ (19) 式中, η'' 为锂蒸气的动力粘度系数, Pa·s, 计算 值与实验值的平均偏差为 ± 0.8%。

 1.2.8 锂的压缩系数与热膨胀系数 锂的等温 压缩系数、绝热压缩系数和热膨胀系数采用文献
 [8]数据线性插值或文献[14-15]计算公式进行计算,限于篇幅,不再赘述。

1.2.9 锂的定压比热

(1) 固态锂:固态锂的定压比热用下式计 算^[7]:

$$c_p = 4186.8 \times (0.83896 + 2.21 \times 10^{-4}T + 10^{-4}T)$$

 $7.914 \times 10^{-6} T^2 - 2.123 \times 10^{-8} T^3) \qquad (20)$

式中, c_p 为固态锂的定压比热,J/(kg·K)。式(20)的适用范围是 298 K 至熔点,计算值与实验值的 平均偏差为-0.034%。

(2)饱和液态锂和过冷液态锂:根据文献[7], 饱和液态锂和过冷液态锂的定压比热可用式(21) 表示:

$$c'_{p} = 4186.8 \times \left(0.84290 + 1.885 \times 10^{-4}T - 6.866 \times 10^{-8}T^{2} + \frac{29789}{T}\right)$$
(21)

式中, c'_p 为饱和液态锂的定压比热,J/(kg·K)。上 式的适用范围是熔点至 1173 K,计算值与实验值 的平均偏差为-0.04%。

(3)饱和锂蒸气和过热锂蒸气:采用文献[7] 的数据拟合得到饱和锂蒸气的定压比热为:

 $c_p'' = 4164.4077 - 6.0575T + 8.2883421 \times$

$$10^{-3}T^2 - 2.0143194 \times 10^{-6}T^3$$
 (22)

式中, $c_p^{\prime\prime}$ 为饱和锂蒸气的定压比热,J/(kg·K),公 式适用的温度范围为:900~3000 K,平均偏差为 ±2.67%。由于尚无过热锂蒸气的定压比热数据, 所以程序中采用焓的微分式(dh/dT)求得。 1.2.10 表面张力 液态锂的表面张力系数计算 公式为:

 $\sigma = 0.473 - 1.6 \times 10^{-4}T$ (23) 式中, σ 为表面张力系数, N/m, 计算值与实验值 的平均偏差为±0.8%。

2 计算程序开发与使用说明

根据以上金属锂各热物性计算公式及模型, 利用 Fortran 语言开发了金属锂热物性参数计算 程序 SNPS-LITHIUM,程序可作为任一主程序的 子程序。程序可用于计算 273.15~2273.15 K, 0.001~2.5 MPa 范围内固体锂、液态锂、锂蒸气的 密度、比焓、定压比热、定容比热、粘度、导热 系数、普朗特数、声速、熵、汽化热、表面张力、 等温压缩系数、绝热压缩系数、热膨胀系数等热 物性参数。

程序包括最重要的子程序 SUBROUTINE LITHIUM (*K*,*X*,*Y*,*Z*),公共变量模块 MODULE shared_data,以及次要的子函数和子程序。

在锂热物性参数计算时,根据需求选择不同 的物性种类代码 K 值 根据 K 值需要输入的变量, 再调用语句 CALL LITHIUM (K,X,Y,Z)即可求 出所需的物性值。K 值在 101~113 范围内时,计 算的是固态锂、过冷液态锂和过热锂蒸气的热物 性参数,需要同时输入压强和温度。比如,计算 1200 K,1 MPa 时锂的定压比热,则需要 CALL LITHIUM (104,1×10⁶,1200,CP),则返回的 CP 值等于定压比热的值。K 值在 201~216 范围内时, 计算的是饱和液态锂和饱和锂蒸气的物性参数。 比如,计算 1200 K 时饱和液态锂和饱和锂蒸气的 熵,需要 CALL LITHIUM (203,SV,1200,SL), 则返回的饱和锂蒸气熵值 (SV)和饱和液态锂熵 值 (SL)。

3 程序计算结果与比较

利用有限的实验数据对程序进行了验证,结 果如图 1~图 4 所示。图 1 给出了金属锂密度程序 计算值与实验值的比较,可以看出在低温和高温

图1 金属锂密度计算值与实验值的比较

Fig.1 Comparison of Lithium Density Calculation Values and Experimental Values

图 2 金属锂定压比热计算值与实验值的比较

Fig. 2 Comparison of Lithium Specific Heat Calculation Values and Experimental Values

图 3 液态锂粘性系数计算值与实验值的比较

Fig. 4 Comparison of Liquid Lithium Entropy Calculation Values and Experimental Values

处程序计算值与实验值得偏差相对较大;由图 2 可以看出金属锂定压比热计算值与实验值偏差很 小;由图 3 和图 4 可以看出在高温区液态锂粘性 系数和熵的计算值与实验值偏差相对较大。程 序计算结果与实验数据的偏差已在计算模型中 给出。

4 结 论

本文建立了金属锂热物性参数计算模型,并 利用 FORTRAN 语言开发了金属锂热物性计算程 序 SNPS_LITHIUM,利用实验数据对程序进行了 验证,程序可用于计算固态锂、液态锂,和锂蒸 气的热物性参数。程序可用于金属锂作冷却剂的 空间堆及高温锂热管的热工水力设计及安全分析 研究工作。

参考文献:

- Truscello, V C, Rutger L L. The SP-100 power system[C]. Melville, NY: El-Genk, M.S., Hoover, M.D., 1992.
- [2] El-Genk M S, Hatton S, Fox C, Tet al. SCoRe—concepts of liquid metal cooled space reactors for avoidance of single-point failure[C]. Melville, NY: El-Genk, M.S., 2005.
- [3] 李华琪, 江新标, 陈立新, 等. HP-STMCs 空间堆热管运行参数计算[J]. 现代应用物理, 2014, 5(2):154-160.
- [4] 李华琪, 江新标, 陈立新, 等. HP-STMCs 空间堆堆芯

稳态热工特性分析[J]. 现代应用物理, 2015, 6(2): 144-150.

- [5] 李华琪, 江新标, 杨宁, 等. HP-STMCs 空间堆堆芯典 型瞬态热工特性分析[J]. 核动力工程, 2015, 36(3): 36-40.
- [6] 居明怀,徐元辉,李怀宣.载热质热物性计算程序及数据手册[M].北京:原子能出版社,1990.
- [7] Kilillov P L. Thermophysical properties of materials for nuclear engineering [M]. Obninsk: Institute for Atomic Power Engineering – Technical University, 2006.
- [8] B. K. 格里申, M.F. 格拉祖诺夫, A.F. 阿拉克洛夫, 等 著. 锂的性质[M]. 北京:中国工业出版社, 1966.
- [9] Lyon R L. Liquid metals Handbook [M]. Sec. Ed. Washington, Atomic Energy Commission, 1955, 38-102.
- [10] Davison H W. Compilation of thermophysical properties of liquid lithium[R]. America: NASA, 1968.
- [11] Ewing C T, Stone J P, Spann J R, et al. High Temperature Properties of Sodium and Potassium[R]. NRL Memorandum Report 1263. 1963.
- [12] Klemens P G Williams R K. Thermal Conductivity of Metals and Alloys [J]. Int. Met. Rev. 1986, 31(5): 197-215.
- [13] Williams R K, Coleman G L, Yarbrough D W. An evaluation of some thermodynamic and transport properties of solid and liquid lithium over the temperature range 200-1700K [J]. Lithium, 1988:17.
- [14] Pasternak A D. Isothermal Compressibility of the Liquid Alkali Metals [J]. Mater. Sci. Eng. 1968, 3(2): 65-70.
- [15] Rowlinson J S. Liquids and Liquid Mixtures [M]. 2nd Ed, London: Butterworth, 1971.

(责任编辑:张明军)