2017年10月

文章编号:0258-0926(2017)05-0024-04;doi:10.13832/j.jnpe.2017.05.0024

# 基于节点模型的空间堆系统动态特性分析

李华琪,胡攀,杨宁,朱磊,田晓艳,陈立新,江新标

西北核技术研究所,西安,710024

摘要:建立集总参数法的碱金属冷却空间堆系统动态特性分析的节点模型,利用 Simulink 软件开发了空间堆系统动态特性分析程序,并利用设计参数对程序进行验证。分析了控制鼓转角和外部负载电阻阶跃变化时的系统动态响应特性。结果显示:在控制鼓角度阶跃变化引入正反应性时,堆芯功率迅速上升尔后由于负反馈而达到新的稳定状态,但热电偶(TE)电功率的输出有一定的延迟。在外部负载电阻阶跃变化时,TE 热电转换电功率输出快速升高,使得 TE 热端温度升高,堆芯温度升高,由于负反应反馈导致堆芯温度下降。比较两者瞬态响应,外部负载电阻的变化较控制鼓角度的变化引起 TE 电功率输出的响应要快速。

关键词:节点模型;空间堆;动态特性 中图分类号:TL331 文献标志码:A

# Development of A Nodal Model for Space Reactor System Dynamic Characteristics Analysis

Li Huaqi, Hu Pan, Yang Ning, Zhu Lei, Tian Xiaoyan, Chen Lixin, Jiang Xinbiao

Northwest Institute of Nuclear Technology, Xi'an, 710024, China

Abstract :A lumped parameter method nodal model is developed for alkali metal cooled space reactor system dynamic characteristics analysis in this paper. The space reactor system dynamic response code was built by using Simulink, and the code was approved with steady state designed parameters. The transient response of space reactor was studied on the step responses of the increase in the drum angle and external load. The results show that the power increased rapidly, and then the power increased slowly to a final new steady state because of the core reactivity temperature feedback. When increased in external load, the TE electric power output increased rapidly and a great negative reactivity was brought to the core, thus the core underwent a rapid power decrease and core fuel temperature decreased. The TE electric power output responds to the change in external load in a much faster spend than the change in control angle.

Key words : Nodal model, Space reactor, Dynamic characteristics

0 前 言

空间核反应堆电源(简称空间堆)是未来大 功率、长寿命、小质量、高可靠性空间电源的最 佳选择之一<sup>[1]</sup>。为了满足空间任务的安全、可靠 及寿命预期的要求,自动和半自动控制是空间堆 设计的关键<sup>[2]</sup>。而空间堆控制系统的基本要求是 在不同运行模式下获得稳定的控制以及增强这些 运行模式转换瞬态的稳定,因此,空间堆自动控制的关键是获得其在不同瞬态的动态特性响应。 本文以碱金属冷却、热电偶(TE)热电转换的空间堆<sup>[3]</sup>为对象,建立了集中参数法的碱金属冷却 空间堆系统动态特性分析的节点模型,并对控制 鼓转角和外部负载阶跃变化的瞬态响应进行分析 模拟。

收稿日期:2016-11-22;修回日期:2017-07-10

作者简介:李华琪(1989—),男,助理研究员,现主要从事核反应堆热工水力与安全分析研究

## 1 空间堆系统及分析模型

1.1 碱金属冷却空间堆系统简介

碱金属冷却空间堆系统由核反应堆、泵送热 传输系统、TE 热电转换和废热排放系统组成。堆 芯采用高富集度(93%)的氮化铀(UN)燃料封 装在包壳内,堆芯反射层为氧化铍。

通过无转动部件的密封电磁泵(EM)驱动液 态锂来导出堆芯的热量。因锂导热性好和 1350 K 时低蒸汽压而选择为冷却剂。一回路系统与能量 转换系统之间通过热交换器换热。电磁泵泵送一 回路冷却剂从堆芯进入热交换器的热端。在一回 路热交换器中,冷却剂流量在每一热交换器 30 个流道分布。大约 480 个 TE 单元在每一流道表 面。当热量从流道表面传递给 TE 单元,冷的流 体从冷端收集流出一回路热交换器。在空间堆设 计中,3 条回路将热量传给 TE 部件。TE 单元 通过二回路将废热传递给热管辐射散热器排向 太空。

建立碱金属冷却空间堆动态特性分析的节点 模型,包含中子动力学模型、反应堆控制机理模 型、堆芯传热模型、一回路热交换器模型、TE 热 电转换模型和辐射散热器模型。

1.2 中子动力学模型

利用 6 组缓发中子点堆动态方程<sup>[4]</sup>模拟堆芯 功率随反应性的瞬变过程,求解点堆动力学方程 的动态参数参见文献[5]。空间堆的反应性温度反 馈主要来源为:燃料芯块、燃料包壳、堆芯结构 材料、反射层、锂、屏蔽体等<sup>[6]</sup>。本文主要计算 燃料的多普勒效应、燃料膨胀的反应性反馈和堆 芯冷却剂膨胀反应性反馈<sup>[4]</sup>,公式如下:

 $\rho(t) = \rho_{\rm CD} + \rho_{\rm feedback}$ 

$$= \rho_{\rm CD} + \alpha_{\rm D} \ln \left( T_{\rm f} / T_{\rm f,0} \right) + \alpha_{\rm F} \left( T_{\rm f} - T_{\rm f,0} \right) + \alpha_{\rm clad} \left( T_{\rm clad} - T_{\rm clad,0} \right) + \alpha_{\rm C} \left( T_{\rm C} - T_{\rm C,0} \right)$$
(1)

式中,*t*为时间; $\rho_{CD}$ 为控制鼓引入的反应性;  $\rho_{feedback}$ 为反应性反馈; $\alpha_D$ 为燃料多普勒反应性系数,  $2.4 \times 10^{-7}$ ; $\alpha_F$ 为燃料膨胀反应性系数,  $\alpha_F = -1.22 \times 10^{-5} \text{ K}^{-1}$ ; $\alpha_{clad}$ 为燃料包壳膨胀反应性系数,  $1.20 \times 10^{-7} \text{ K}^{-1}$ ; $\alpha_C$ 为堆芯冷却剂膨胀反应性系数,  $1.20 \times 10^{-7} \text{ K}^{-1}$ ; $\alpha_C$ 为堆芯冷却剂膨胀反应性系数,  $\alpha_C = -3.25 \times 10^{-6} \text{ K}^{-1}$ ; $T_f$ 为燃料温度,K;  $T_{clad}$ 为燃料包壳温度,K; $T_C$ 为冷却剂温度,K; 下标:0为初始时刻。

## 1.3 反应性控制机理模型

外部反应性控制的方法是利用步进电机控制 鼓系统的机理<sup>[7]</sup>。控制鼓转轴可在 0~180°内旋 转。控制电压为一系列频率为 0~1.33 Hz 变化的 电压为 27 V 的矩形脉冲。这个脉冲电压转换为转 轴离散的运动来控制转鼓。步进电机转轴的位置 方程如下:

$$\frac{d^2\theta}{dt^2} + 1.01\frac{d\theta}{dt} = 0.525u$$
 (2)

式中, *u* 为控制电压, V; θ 为步进电机的轴转角; *t* 为时间。

 $\rho_{\rm CD}$ 可以拟合为  $\theta$  的多项式函数<sup>[7]</sup>,如下:  $\rho_{\rm CD} = 6.89 \times 10^{-13} \theta^5 - 2.33 \times 10^{-10} \theta^4 + 3.28 \times$ 

1.4 堆芯传热模型

建立了集总参数的堆芯简化传热模型来计算 燃料、包壳、堆芯冷却剂的平均温度。*T*<sub>f</sub>、 *T*<sub>clad</sub>、 *T*<sub>C</sub>可通过以下常微分方程组计算:

$$\begin{cases} \frac{dT_{\rm f}}{dt} = \frac{1}{C_{\rm f}} \Big[ P_{\rm n} - (T_{\rm f} - T_{\rm clad}) UA_{\rm f} \Big] \\ \frac{dT_{\rm clad}}{dt} = \frac{1}{C_{\rm clad}} \Big[ (T_{\rm f} - T_{\rm clad}) UA_{\rm f} - (T_{\rm clad} - T_{\rm C}) UA_{\rm clad} \Big] \\ 0.5 \frac{dT_{\rm C}}{dt} = \frac{1}{C_{\rm C}} \Big[ 0.5 (T_{\rm clad} - T_{\rm C}) UA_{\rm clad} - \dot{m}_{\rm C} C_{\rm p} (T_{\rm C} - T_{\rm Pout}) \Big] \\ 0.5 \frac{dT_{\rm Pin}}{dt} = \frac{1}{C_{\rm C}} \Big[ 0.5 (T_{\rm clad} - T_{\rm C}) UA_{\rm clad} - \dot{m}_{\rm C} C_{\rm p} (T_{\rm Pin} - T_{\rm C}) \Big] \end{cases}$$

式中, $T_{Pout}$ 为堆芯冷却剂进口温度/一回路热交换 器出口温度,K; $P_n$ 为堆芯功率; $C_P$ 为一回路热 交换器热容; $T_{Pin}$ 为堆芯冷却剂出口温度/一回路 热交换器进口温度,K; $\dot{m}_C$ 为堆芯冷却剂流量, kg/s; $C_C$ 为冷却剂热容,J/K; $C_f$ 为燃料热容,J/K;  $C_{clad}$ 为燃料包壳热容J/K; $UA_f$ 为燃料与包壳之间 的等效热导,W/K; $UA_{clad}$ 为燃料包壳与堆芯冷却 剂之间的等效热导,W/K。

1.5 一回路热交换器热模型

一回路热交换器热模型与 TE 单元模型相耦 合。从一回路热交换器排出的热量取决于 TE 单 元热端的温度,而在 TE 模型的热源则决定于一 回路热交换器内流体温度。虽然热交换器一个流 道表面耦合 480 个 TE 单元,但在建模时,采用 一个单元节点来描述 TE 单元导出的热量。基于

$$\frac{\mathrm{d}T_{\mathrm{Pout}}}{\mathrm{d}t} = \frac{1}{C_{\mathrm{PH}}} \cdot \frac{1}{N_{\mathrm{H}}} \dot{m}_{\mathrm{P}} C_{\mathrm{p}} \left( T_{\mathrm{Pin}} - T_{\mathrm{Pout}} \right) - \frac{1}{N_{\mathrm{TE}}} N_{\mathrm{TE}} U A_{\mathrm{PTE}} \left( T_{\mathrm{Pin}} - T_{\mathrm{Hshoe}} \right)$$
(5)

$$\frac{\mathrm{d}T_{\mathrm{Sout}}}{\mathrm{d}t} = \frac{1}{C_{\mathrm{SH}}} N_{\mathrm{TE}} U A_{\mathrm{STE}} \left( T_{\mathrm{Cshoe}} - T_{\mathrm{Sin}} \right) - \frac{1}{C_{\mathrm{SH}}} \cdot \frac{1}{N_{\mathrm{H}}} \dot{m}_{\mathrm{S}} C_{\mathrm{p}} \left( T_{\mathrm{Sout}} - T_{\mathrm{Sin}} \right)$$
(6)

式中, $T_{Sout}$ 为热交换器二回路流道出口温度,K;  $T_{Hshoe}$ 为 TE 单元热端温度,K; $T_{Cshoe}$ 为 TE 单元 冷端温度,K; $C_{PH}$ 为热交换器一回路流道热容, J/K; $C_{SH}$ 为热交换器二回路流道热容,J/K; $N_{TE}$ 为每一热交换器 TE 单元的数目; $N_{H}$ 为热交换器 数目; $\dot{m}_{p}$ 为热交换器一回路冷却剂质量流量, kg/s; $\dot{m}_{s}$ 热交换器二回路冷却剂质量流量,kg/s;  $UA_{PTE}$ 为热交换器一回路流道流体到 TE 热端材 料的等效热导,W/K; $UA_{STE}$ 为 TE 冷端材料到热 交换器二回路流道流体的等效热导,W/K; $T_{Sin}$ 为 热交换器二回路流道进口温度,K。

#### 1.6 TE 热电转换模型

在物性参数与温度无关的情况下, Thomson 效应可以忽略。如果进一步假设 P-型半导体和 N-型半导体有相同的物性参数和热端温度以及冷 端温度是常数,基于控制方程及边界条件的温度 分布结果如下<sup>[8]</sup>:

$$K_{\text{TE}} \left( T_{\text{Hshoe}} - T_{\text{Cshoe}} \right) + \alpha_{\text{pn}} T_{\text{Hshoe}} I - 0.5I^2 \left( R_{\text{p}} + R_{\text{N}} \right)$$
  
=  $UA_{\text{PTE}} \left( T_{\text{Pin}} - T_{\text{Hshoe}} \right)$  (7-1)  
 $K_{\text{TE}} \left( T_{\text{Hshoe}} - T_{\text{Cshoe}} \right) + \alpha_{\text{pn}} T_{\text{Cshoe}} I + 0.5I^2 \left( R_{\text{p}} + R_{\text{N}} \right)$   
=  $UA_{\text{STE}} \left( T_{\text{Cshoe}} - T_{\text{Sin}} \right)$  (7-2)  
 $T = \left[ \alpha_{\text{c}} \left( T_{\text{c}} - T_{\text{c}} \right) \right] / \left( R_{\text{c}} + R_{\text{c}} + R_{\text{c}} \right)$  (8)

 $I = [\alpha_{pn}(T_{Hshoe} - T_{Cshoe})]/(R_N + R_P + R_L)$  (8) 式中,  $K_{TE}$ 为 TE 单元的有效热导, W/K;  $\alpha_{pn}$ 为 塞贝克效应系数, V/K; I为电流, A;  $R_L$ 为外部 负载电阻,  $\Omega$ ;  $R_P$ 为 P-型半导体内部电阻,  $\Omega$ ;  $R_N$ 为 N-型半导体内部电阻,  $\Omega$ 。

电功率输出 P<sub>e</sub>为:

流入

$$P_{\rm e} = I^2 R_{\rm L}$$
 (9)  
TE 发电器的热功率  $q_{\rm TE}$ 为:

$$q_{\text{TE}} = UA_{\text{PTE}} \left( T_{\text{Pin}} - T_{\text{Hshoe}} \right)$$
 (10)  
TE 的热电转换效率  $\eta$  为:

 $\eta = P_{e}/q_{\rm TE}$ 

单节点模型用于描述辐射散热器的散热。假 设辐射散热器冷却剂温度等于出口温度,辐射器 的温度 T<sub>Sin</sub>为:

$$\frac{dT_{\rm Sin}}{dt} = \frac{1}{C_{\rm prad}} \cdot \frac{1}{N_{\rm Hx}} \dot{m}_{\rm S} C_{\rm p} \left( T_{\rm Sout} - T_{\rm Sin} \right) - \frac{1}{C_{\rm prad}} \varepsilon \sigma F_{\rm rad} A_{\rm TE} \left( T_{\rm Sin}^4 - T_{\rm a}^4 \right)$$
(12)

式中,  $\varepsilon$  为发射率(0.85);  $N_{Hx}$  为换热器数量; F 为辐射散热器表面几何因子;  $\sigma$  为 Stephan-Boltzman常数, 5.67×10<sup>-8</sup> W/(m<sup>2</sup>·K<sup>4</sup>);  $T_a$ 为空间温度, 250 K。

# 2 计算结果分析

2.1 系统分析程序简介

基于以上模型利用 MATALB/Simulink 软件 建立碱金属冷却空间堆系统动态特性分析程序, 并与利用 SNPSAM 程序<sup>[9]</sup>计算的稳态运行设计参 数相比较对程序进行验证。表 1 给出了本文模拟 结果与满功率运行设计参数之间的比较。许多结 果与 SNPSAM 的设计参数符合很好。最大的不同 在于转换效率和转换功率,原因在于本文选取了 在最大转换效率的外部负载电阻值。因此,建立 的模拟模型可用于可信的空间堆控制及动态特性 分析。

表 1 模拟模型与设计参数的比较 Table 1 Comparison between Simulation Results and

| Design Parameters |       |       |
|-------------------|-------|-------|
| 参数名               | 参数设计值 | 模拟结果  |
| 堆芯热功率 / kW        | 2000  | 2000  |
| 电功率输出 / kW        | 112   | 115.7 |
| 系统效率 /%           | 5.59  | 5.785 |
| 堆芯进口温度 / K        | 1254  | 1250  |
| 堆芯出口温度 / K        | 1284  | 1284  |
| 燃料平均温度 / K        | 1376  | 1376  |
| 包壳平均温度 / K        | 1288  | 1288  |
| TE 热端温度 / K       | 1237  | 1237  |
| TE 冷端温度 / K       | 857   | 856.5 |

# 2.2 控制鼓转角的阶跃变化情况 研究了空间堆正常运行时控制鼓角度阶跃变

化 15°引入正反应性的动态特性响应。假设控制 棒转角在 50 s 时阶跃变化 15°。控制鼓转角阶跃 变化工况的空间堆各参数的动态响应计算结果表 明:堆芯燃料膨胀效应和冷却剂温度反馈为主要 的反应性反馈,燃料包壳和燃料多普勒反应性反 馈则较小,且燃料多普勒效应为正反馈,但堆芯 总的反应性反馈为负,在 150 s 时堆芯总的反应 性变为 0,这说明碱金属冷却空间堆具有自动调 节的特性。

空间堆堆芯热功率和 TE 电功率输出的响应 变化计算结果表明,堆芯热功率会随着控制鼓反 应性引入迅速阶跃上升,达到峰值功率,随后由 于堆芯反应性负反馈的作用下降到新的稳定状 态。而电功率的输出变化不是迅速阶跃增加的, 电功率的上升存在一定的延迟,这是由于 TE 电 功率随堆芯出口温度的变化而变化,由于热惯性 的作用使得温度响应存在一定的时间过程,因此 TE 电功率的变化与 TE 温度的响应相一致。电流 和热电转换效率的响应计算结果表明,电流和热 电转换效率都会升高并达到稳定状态。

2.3 外部负载电阻的阶跃变化情况

TE 单元外部负载电阻阶跃变化 0.01 Ω 时的 空间堆系统瞬态响应特性的计算结果表明 :当 TE 单元的负载阶跃变化 0.01 Ω 时,使得 TE 电流阶 跃减小,引起电功率的阶跃下降,但外部负载电 阻的增加使得电功率会增大,在 2 者的相互作用 下电功率输出最终增大。电功率输出的响应是非 常迅速的,与控制鼓转角变化响应相比较,变化 外部负载可能有固有负荷跟踪的能力而不改变堆 芯热功率和堆芯出口温度。

外部负载电阻的阶跃变化引起 TE 热端温度 的升高和冷端温度的下降,从而使得热电转换效 率升高,而 TE 温度的升高使得冷却剂温度升高, 由于冷却剂温度负反馈,使得堆芯热功率下降, 从而使得堆芯燃料温度先升高达到峰值后会下降 到一稳定的值,燃料膨胀则引入正的反应性,最 终在 250 s 时堆芯总反应性反馈为 0,亦即堆芯总 反应性为 0,反应堆系统达到稳定状态。堆芯热 功率和堆芯温度的变化很小,说明 TE 热电转换 具有一定的负荷跟踪调节能力。

## 3 结 论

主要研究了基于集中参数法的空间堆系统动 态特性分析模拟的节点模型,利用 Simulink 软件 编制了空间堆系统动态特性分析程序,并初步分 析了碱金属冷却空间堆在控制鼓转角和外部负载 电阻阶跃变化时的瞬态响应。根据计算得到以下 结论:

(1)建立的空间堆系统节点模型可用于动态 特性分析以及自动控制方法研究。

(2)在控制鼓转角阶跃变化时,堆芯热功率 迅速阶跃变化达到峰值功率,由于反应性反馈尔 后下降到稳定值,而电功率的响应随堆芯温度的 变化而变化,由于材料的热惯性使得温度和电功 率输出的响应存在一定的时间延迟。

(3)在外部负载电阻阶跃变化时,TE 电功率 输出则会迅速响应,与控制鼓转角变化响应相比 较,变化外部负载可能有负荷跟踪能力而不改变 堆芯热功率以及出口温度,另外,TE 电功率输出 响应的变化也很迅速。

参考文献:

- [1] 苏著亭,杨继材,柯国土.空间核动力[M].上海:上 海交通大学出版社,2016.
- [2] Anderson J L , Oakes L C. Instrumentation and Controls Evaluation for Space Nuclear Power Systems [C]. Proceedings of the First Symposium on Space Nuclear Power Systems, New Mexico, 1984: 109-114.
- [3] Demuth S F. SP100 Space reactor design [J]. Progress in Nuclear Energy, 2003, 42(3): 323-359.
- [4] 李华琪, 江新标, 杨宁, 等. HP-STMCs 空间堆堆芯典 型瞬态热工分析[J]. 核动力工程, 2015, 36(3): 36-40.
- [5] Berkan R C, Upadhyaya B R, Kisner R A. Low-Order Dynamic Modeling of the Experimental Breeder Reactor-II[R]. ORNL/TM-11161, 1990.
- [6] Wright S A, Houts M. Coupled reactor kinetics and heat transfer model for heat pipe cooled reactors[C]. Space Technology and Applications International Forum-STAIF 2001. American Institute of Physics, 2001: 815-820.
- [7] Shtessel Y B. Sliding Mode Control of the Space Nuclear Reactor System[J]. IEEE Transactions on Aerospace and information Sciences, 1998, 34(2): 579-589.
- [8] Soo S L. Direct Energy Conversion[M]. Prentice-Hall, Inc, 1968.
- [9] El genk M S, Seo J T. SNPSAM-Space Nuclear Power System Analysis Model[C]. Space Nuclear Power System 1986, Orbit Book Company, Inc., Malabar, FL, 1987: 111-123.

(责任编辑:王中强)