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Uncertainty Study of Core Power Distribution for Software NESTOR
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Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu, 610041, China

Abstract: As the key indicator of the nuclear design, the computational accuracy of the core
power distribution is very important for the evaluation of the economy and safety of nuclear power
plants. As the first nuclear power software developed on self-reliance in China, the computational
accuracy and applicability of NESTOR is the foundation for its application. Based on the random
sampling statistical analysis (RSSA) method and deviation transmission idea, the uncertainty of core
power distribution was obtained by combining two independent uncertainties resulting from the
analysis of the uncertainty of physical model and the uncertainty of the change of parameters. The
results indicate that the RSSA is feasible in the uncertainty analysis of nuclear design. In addition,
in the analysis of the uncertainty of physical model, the core power distribution was decomposed
into 2 parts, including the uncertainty of detailed power distribution in an assembly and the
uncertainty of assembly power. As a result, the uncertainty of radial power distribution caused by
physical model was +3.653%, the uncertainty of radial power distribution caused by the change of
parameters was +0.964%, and the final uncertainty of radial power distribution was +3.778% under
the condition of 95% confidence coefficient and 95% probability that computed through the
deviation transmission idea. The computational accuracy is as high as the engineering design
software, and it lays foundation for the application and verification of NESTOR.

Key words: NESTOR, Nuclear design, Uncertainty analysis, RSSA
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