2018年6月

文章编号:0258-0926(2018)03-0051-05; doi:10.13832/j.jnpe.2018.03.0051

基于二次辐照的 CMRR 乏燃料组件 燃耗测量技术研究

窦海峰,李润东^{*},朱世雷,王俊伟,司开拓,袁 姝,杨 鑫,冷 军

中国工程物理研究院核物理与化学研究所,四川绵阳,621900

摘要:由于研究堆堆芯装载灵活多变、运行模式复杂,传统的燃耗无损检测技术精度不高。基于乏燃料 二次辐照的燃耗测量技术具有不依赖于乏燃料组件的运行历史数据、测量精度较高的优点。本文研究了该方 法中裂变产物来源甄别技术,建立了燃耗测量原理装置,分析了装置相对测量效率,完成了中国绵阳研究堆 (CMRR)典型乏燃料组件的燃耗测量实验。测量结果表明,对于燃耗为15%左右的乏燃料组件,²³⁵U质量 的测量不确定度好于 5%。

关键词:燃耗无损检测;乏燃料二次辐照;中国绵阳研究堆(CMRR) 中图分类号:TL329.2 文献标志码:A

Determination of Fissile Nuclide ²³⁵U Content in Re-Irradiated Spent Fuel Assemble with Nondestructive Assay

Dou Haifeng, Li Rundong^{*}, Zhu Shilei, Wang Junwei, Si Kaituo, Yuan Shu, Yang Xin, Leng Jun

Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China

Abstract: Adequate knowledge of burnup levels of fuel elements within a research reactor is of great importance for its safe operation. The traditional nondestructive assay of burnup is to measure the radiation emitted either as neutrons or gamma rays. But the results are not satisfactory in accuracy because of variability of core loading and operation history. This paper presents a method for the experimental determination of fissile nuclide ²³⁵U content in Spent Fuel Assembles (SFAs). The method is based on re-irradiation of SFAs and measurement of the delayed gamma-rays emitted by the generated fission products. The most important advantage of this method is its independence of SFA irradiation history. This paper emphasizes how to discriminate the resource of characteristic gamma ray and introduces the experimental device. A SFA with about 15% burnup unloading from CMRR is measured by the above method and the uncertainty is less than 5%.

Key words: Nondestructive assay of burnup, Re-irradiation of SFAs, CMRR

0 引 言

准确测量燃料组件燃耗对保障反应堆的安全 运行、合理设计堆芯换料方案、经济有效的利用 燃料组件都具有重要的意义。传统的燃耗无损测 量技术^[1-4]主要适用于核电站这类运行模式固定 的反应堆,由于研究堆堆芯装载灵活多变、运行 模式复杂,传统技术测量精度不高。

本文在中国绵阳研究堆(CMRR)上开展了

基于乏燃料二次辐照的乏燃料组件燃耗无损检测 技术研究^[5-6],设计、搭建了 CMRR 燃耗测量装 置,对堆芯卸载出的燃耗理论分析值约 15%的燃 料组件开展了测量实验,²³⁵U 核素的质量测量结 果与理论结果的偏差约 2.4%。

 基本原理 基于乏燃料二次辐照的研究堆乏燃料组件燃

收稿日期:2017-04-11;修回日期:2017-10-12 作者简介:窦海峰(1979—),男,硕士,核能科学与工程专业 *通信作者:李润东(1969—),男,E-mail:amdom@sohu.com

耗无损测量,通过γ射线扫描技术测量二次辐照 裂变产生的特征裂变产物,可以获得乏燃料组件 内²³⁵U核素的质量。实验中,一是由于燃料组件 的多层板状结构,γ射线在燃料芯体、铝包壳及 水隙内衰减路径复杂;二是由于辐照后的燃料组 件具有极强的放射性,远距离测量引入的准直管 直线度偏差,都导致探测器对乏燃料组件不同γ 射线源点的探测效率相当复杂,没有理想的几何 条件一致的标准源来效率刻度。因此,采用与标 准样对比方法给出待测组件内易裂变核素²³⁵U的 定量分析结果。

实验中,先把待测乏燃料组件和标准组件 (235 U 含量已知)放入反应堆辐照,辐照后测量 得到的标准组件和乏燃料的某种特定产物核素的 饱和活度,根据式(1)计算出组件中 235 U的质 量 $M_{5.B}$:

$$M_{5,\mathrm{B}} = \frac{M_{5,\mathrm{N}} \sum_{i} \beta_{i} \left(\frac{A_{\mathrm{f,B}}}{A_{\mathrm{m,B}}}\right)_{i} \Delta z_{i}}{\sum_{i} \left(\frac{A_{\mathrm{f,N}}}{A_{\mathrm{m,N}}}\right)_{i} \Delta z_{i}} \qquad (1)$$

式中, $M_{5,N}$ 为标准组件的质量,g; $A_{f,B}$ 、 $A_{f,N}$ 为乏 燃料和标准燃料组件裂变产物的饱和活度,Bq; $A_{m,B}$ 、 $A_{m,N}$ 为乏燃料和标准燃料组件辐照中子注 量监视器的饱和活度,Bq; Δz 为相邻测点之间的 距离,cm;B为基准组件和乏燃料组件中子注量 率和裂变截面修正因子。

2 燃耗测量

2.1 燃耗测量装置

CMRR 燃耗测量平台建立在乏燃料转运水池 上方,由于辐照后的燃料组件具有极强的放射性, 为了降低测量死时间、保障实验人员以及仪器设 备的安全,燃料元件放在位于水下约6m深的燃 料组件平台上,该平台为池壁内侧支架,伸出长 度约 20 cm。测量采取逐点扫描的方式,二维移 动控制平台定位精度好于1μm,二维移动平台搭 载于池壁支架上,准直部件悬挂在移动平台上。

由于准直管长 6 m,受平台承重限制,准直 管壁厚不能太大,其刚度不能保障直线度要求, 因此设计分成 4 段,采用刚性法兰盘控制准直管 直线度。准直管上下端都安装了铅准直部件,下 端准直孔直径 5 mm,上端准直孔直径 10 mm,如 图 1。

2.2 ²³⁵U 和 ²³⁹Pu 对裂变产物贡献测量

反应堆的初始易裂变核素主要是²³⁵U,还有 大量的可裂变核素²³⁸U,反应堆运行过程中,部 分²³⁸U 会通过中子俘获反应生成易裂变核素 ²³⁹Pu。随着堆运行时间的增长,堆内²³⁹Pu的含量 不断增多,此时堆内主要的易裂变核素包括²³⁵U 与²³⁹Pu。因此,在后续的²³⁵U燃耗测量中必须考 虑到²³⁹Pu的贡献。

利用多种射线的测量活度 A_i 可以来确定 N₅/N₉。理论上,对多种裂变产物中第 i 种产物特 征射线的测量活度可表示为:

 $A_i = \varepsilon_i \lambda_i R_i \varphi(\sigma_{f5} N_5 Y_{5i} + \sigma_{f9} N_9 Y_{9i})$ (2) 式中, Y_{5i} , Y_{9i} 为 ²³⁵U和 ²³⁹Pu 裂变产物中对应的 某一特征能量射线的核素产额; σ_{f5} 、 σ_{f9} 为 ²³⁵U 和 ²³⁹Pu 的微观裂变反应截面, 10⁻²⁴ cm²; λ_i 为 *i* 种产物衰变常数, s⁻¹; ε_i 为 *i* 种产物射线探测效 率; R_i 为特征能量射线的分支比; ϕ 为辐照位置 中子注量率, cm⁻²·s⁻¹。

根据多种测量放射性射线,利用最小二乘法 得到:

$$R^{2} = \sum_{i=1}^{n} (A_{i} - \varepsilon_{i}\lambda_{i}\varphi\sigma_{f5}N_{5}Y_{5i} - \varepsilon_{i}\lambda_{i}\varphi\sigma_{f9}N_{9}Y_{9i})$$
(3)

 $\Leftrightarrow a = \varphi \sigma_{f5} N_5, b = \varphi \sigma_{f9} N_9$

可获得下述方程组,即可求得*a*, *b*的值,进 而获得*N*₅/*N*₉,即得到了组件中²³⁵U和²³⁹Pu的质量 比值。

$$\begin{cases} \sum_{i=1}^{n} A_{i}\varepsilon_{i}\lambda_{i}Y_{5i} = \sum_{i=1}^{n} \varepsilon_{i}^{2}\lambda_{i}^{2}Y_{5i}^{2}a + \sum_{i=1}^{n} \varepsilon_{i}^{2}\lambda_{i}^{2}Y_{9i}Y_{5i}b \\ \sum_{i=1}^{n} A_{i}\varepsilon_{i}\lambda_{i}Y_{9i} = \sum_{i=1}^{n} \varepsilon_{i}^{2}\lambda_{i}^{2}Y_{5i}Y_{9i}a + \sum_{i=1}^{n} \varepsilon_{i}^{2}\lambda_{i}^{2}Y_{9i}^{2}b \end{cases}$$

求解上述表达式需要标定不同能量 γ 射线的 探测效率,而由于系统几何的复杂性,很难实现 实验标定,因此考虑采用相对效率的模拟分析。 影响探测系统对燃料组件特定能量的 γ 射线的测 量效率的因素可以分为三类。第一类是由各种材 料对 γ 射线的吸收引起的,可以通过理论分析获 得;第二类为几何效应,与 γ 射线能量无关,可 以认为相对效率相同;第三类是探测器自身的探 测效率,可以通过理论建模或者标准源刻度获得。 2.2.1 衰减效应 辐照后燃料内的裂变产物释 放的 γ 射线在穿过燃料板时会持续衰减。所以在 计算乏燃料 γ 射线活度测量效率时必须考虑其衰 减效应。

首先修正的是 γ 射线穿过产地燃料的衰减 (自衰减)。在测量过程中,探测器到燃料板的 距离很长,且固定不变,假定燃料板测量点厚度 方向裂变产物核素分布均匀,自衰减效应修正可 以表述为:

$$k_1 = \frac{\int_0^s e^{-\mu s}}{s} = \frac{1 - e^{-\mu s}}{\mu s}$$
(5)

式中, s为燃料板芯体厚度, cm; μ 为特定能量的 γ 射线、燃料芯体材料的线性衰减系数, cm⁻¹。

其次修正针对 y 射线由产生地到达探测器所 经燃料板及板间水隙,因为燃料组件的燃料板尺 寸一样、辐照环境一致,第 *j* 个燃料板释放的 y 射线穿透所有燃料板,衰减系数为: $k^{N-j} = (e^{-2\mu_{Al}a} \cdot e^{-\mu_a b} \cdot e^{-\mu_s})^{N-j} \cdot e^{-\mu_{Al}a}$ (6) 式中, μ_{Al} 铝的线性衰减系数, cm⁻¹; μ_a 为水的 线性衰减系数, cm⁻¹; N 为组件燃料板总数; a 为铝包壳厚度, cm; b 为 2 个连续燃料板之间水 隙间距, cm。

另外的修正针对最上方的燃料板与准直管底 面之间的水隙、铝窗及准直管内空气。该修正系 数为:

$$k_2 = \mathrm{e}^{-\mu_a C} \cdot \mathrm{e}^{-2\mu_{\mathrm{Al}} c} \cdot \mathrm{e}^{-\mu_{\mathrm{at}} l} \tag{7}$$

式中, *c* 为铝窗厚度; *C* 为最上方燃料板与准直管 底面的距离; μ_{at} 为空气的线性衰减系数; *l* 为准 直管空腔长度。

理论分析获得不同能量的 y 射线相对穿透效 率结果见表 1。

表1 相对效率计算结果

 Table 1
 Calculation Results of Relative Detection Efficiency

能量 /keV	探测效率 理论结果	衰减效率	相对效率	相对效率 拟合结果	拟合 值偏 差/%
200	0.002423	4.57×10 ⁻⁷	1.77×10 ⁻⁶		
300	0.001441	8.55×10 ⁻⁴	1.97×10 ⁻³	0.001931	1.73
400	0.000991	9.13×10 ⁻³	1.44×10 ⁻²	0.014537	-0.71
500	0.00075	2.63×10 ⁻²	3.15×10 ⁻²	0.031608	-0.38
600	0.000605	4.73×10 ⁻²	4.56×10 ⁻²	0.045343	0.63
700	0.000507	6.87×10 ⁻²	5.56×10 ⁻²	0.055345	0.48
800	0.000437	8.93×10 ⁻²	6.23×10 ⁻²	0.06233	-0.11
900	0.000384	1.09×10 ⁻¹	6.65×10 ⁻²	0.067031	-0.74
1000	0.000346	1.27×10 ⁻¹	6.99×10 ⁻²	0.070027	-0.13
1100	0.000313	1.44×10 ⁻¹	7.18×10 ⁻²	0.071749	0.13
1200	0.000286	1.59×10 ⁻¹	7.26×10 ⁻²	0.072512	0.13
1300	0.000263	1.73×10 ⁻¹	7.27×10 ⁻²	0.072548	0.18
1400	0.000244	1.86×10 ⁻¹	7.22×10 ⁻²	0.072029	0.18
1500	0.000226	1.97×10 ⁻¹	7.09×10 ⁻²	0.071084	-0.19
1800	0.000186	2.24×10 ⁻¹	6.65×10 ⁻²	0.06656	-0.04

2.2.2 探测器的探测效率 HPGe 探测器对不同 能量γ射线的探测效率可以通过 Monte Carlo 程序 模拟获得^[7-8]。本文采用 MCNP-4C^[9]程序模拟光 子和电子耦合输运,利用程序的脉冲幅度分布卡 记录γ射线在 HPGe 晶体中的脉冲能量分布,从 而求得模拟效率值。MCNP-4C 程序对脉冲能量分 布进行高斯展宽,能峰半高宽为:

$$E_{\rm FWHM} = a + b \sqrt{E_{\gamma} + cE_{\gamma}^2}$$
 (8)

式中, E_{γ} 为入射 γ 射线能量,MeV;通过拟合实 验测量值 E_{FWHM} ,可得系数值a=0.000398407 MeV,b=0.000603895 MeV^{0.5},c=1.51655。

本实验采用便携式 HPGe 谱仪,探测器型号 GEM-S7025P4-RB-SMP,计算模型参数见图 2。

Fig. 2 Structural Parameter of HPGe Detector

模拟分析假定理想的各向同性点源,位于距 离探头 25 cm 中心位置,能量 1332.49 keV 理想 点源的相对效率模拟值为 20.865%,标准源实验 刻度值为 21%,吻合很好,验证了 MC 模拟的可 靠性。

探测器探测效率模拟结果及相对效率拟合公 式如下:

> $\varepsilon_{\rm r} = 1.1333749 - 0.1285276 \times \ln(E) -$ 199.51717 / E + 24003.417 / E²

3 实验结果及讨论

3.1 实验结果

乏燃料组件燃耗测量对象为编号 MS0723 的 乏燃料组件,采用 MS0722 作为测量标准样。实 验中,沿组件长度方向 75 mm 一个测量点,逐点 测量。测量结果如图 3。

分析测量结果,裂变产物活度较高的主要为 ⁹⁵Zr和¹⁴⁰La,考虑到实验测量时间修正因素,¹⁴⁰La 衰变链相对较复杂,因此选择⁹⁵Zr作为测量组件 燃耗的特征裂变产物目标核素。

辐照中子注量率监测采用经典的活化法相对 测量技术,测量结果如图4。

根据表达式(1),可以计算乏燃料组件 MS723 内²³⁵U 含量,其中辐照修正因子 $\beta = 0.99$,数据分析 考虑了实验测量时间修正因素。结果如表 2 所示。

实验结果表明,测量结果与理论分析值之间 的相对偏差仅 2.4%,吻合较好。

实验中, 各因素对实验结果不确定度的贡献 分析如下表 3。

Fig. 4 Measurement and Calculation Results of Axial Neutron Flux Distribution of Fuel Assembly MS0722 and MS0723

表 2 测量结果与理论结果

Table 2 Calculation and Measurement Results

MS0723内	²³⁵ U 质量 /g		扣对伯关心	
测量结果	理论结果	个'''明正侵(1 <i>0)</i> /%	们小门,周左/%	
346.855	338.625	4.25	2.4	

3.2 实验结果讨论

实验测量的²³⁵U含量大于理论分析值,原因 在于燃料内存在大量的可裂变核素²³⁸U,虽然其

Table 3 Analysis of Measurement Uncertainty Resource					
不确定度	不确定度	子项	不确定度		
来源	(1σ) /%		(1σ) /%		
基准组件	0.1	_	_		
²³⁵ U 质量					
裂变产物	1	统计计数	1		
特征 γ 活度		探测效率	相对测量		
	4.1	活化片质量	1.5		
中マ汁		测量定位	2		
中于注		测量扰动	0.5		
里平血则		测量系统	3		
		统计计数	1		
修正因子 β	0.5				
测量组件	4.25				
²³⁵ U 质量	4.25				

表 3 测量不确定度来源分析

裂变截面很小,但是由于核素含量较大,对测量 y 谱得到的裂变产物有一定贡献。采用 MC 模拟 计算,根据 CMRR 堆芯中子能谱修正 ORIGEN 截面库,模拟分析其中²³⁸U 裂变产物的贡献。由 于乏燃料组件内²³⁵U 质量未知,模拟分析时选取 无燃耗时的²³⁵U 和²³⁸U 的质量比,该修正方法 ²³⁸U 贡献比例较实际小,修正后会减小实验值与 理论值的偏差,同时不会引入额外偏差。程序模 拟计算结果²³⁸U 裂变产物的贡献大约 0.5%。考虑 修正后实验结果见表 4。

表 4 修正后测量结果与理论结果比较

Table 4Comparison of Calculation Results and
Modified Experiment Results

MS0723内	²³⁵ U 质量 /g			
测量结果	理论结果	个''''正度(1σ)/%	怕刈惼左/%	
342.84	338.625	4.25	1.24	

4 结 论

基于二次辐照的板型燃料组件燃耗测量技术 方案,不依赖于燃料组件的运行历史数据,避免 了传统方法需要研究堆运行数据进行复杂修正的 难点,提高了测量精度。值得注意的是,此方法 直接给出乏燃料组件中²³⁵U的含量,而非释能燃 耗[MW·d/t(U)]。依据测量要求,研制了板型燃料 组件燃耗测量原型装置,获得了典型乏燃料组件 的测量实验结果,燃耗在15%左右的燃料组件中 ²³⁵U质量测量不确定度小于5%,与理论分析的偏 差仅2.4%,考虑了理论修正之后仅1.2%,从而 证明了该技术能够获得可靠的乏燃料组件燃耗测 量数据,为研究堆的安全运行和核材料衡算管理 提供了重要的技术支持。

参考文献:

- Neuber J C, Johann H G, Conde J M. Double contingency principle and prevention of misloading events[C]. Proceedings of the iaea technical meeting on advances in applications of burnup credit to enhance spent fuel transportation, storage, reprocessing and disposition, August 29–September 2, 2005, London, U.K., IAEA-TECDOC-1547, ISBN 92-0-103307-9, Date of Issue: June 21, 2007.
- [2] 李桃生,方栋. 核燃料的燃耗测量方法综述[J]. 核电子 学与探测技术, 2005, 25(6): 852-857.
- [3] 杨历军. 非破坏性燃耗测量方法综述[J]. 核电子学与 探测技术, 2011, 31(2): 148-152.
- [4] U.S. NRC. Review of information for spent nuclear fuel burnup confirmation [R]. Oak Ridge National Laboratory, 2002.
- [5] Bushuev A V, Kozhin A F, Li Zhun'dun, et al. Nondestructive assay of nuclide composition in spent fuel assemblies from a research reactor by repeat irradiation and γ-spectrometric measurement. Journal of Nuclear Materials Management[J]. 2008, 35(2), 12-18
- [6] 李润东, Bushyev A V, Korin A F. 研究堆乏燃料组件 中²³⁵U含量和燃耗的测定[J]. 核动力工程 2009, 30(1): 56-59.
- [7] Berndt R, Mortreau P. Monte Carlo modelling of a N-type coaxial high purity germanium detector[J]. Nuclear Instruments and Methods in Physics Research A 2012, 694: 341-347.
- [8] Hau I D, Russ W R, Bronson F. MCNP HPGe detector benchmark with previously validated Cyltran model[J]. Applied Radiation and Isotopes, 2009. 67: 711-715.
- [9] Briesmeister J F(Ed.), MCNP—A General Monte Carlo N-Particle Transport Code, Version4C, LA-13709-M[R]. Los Alamos National Laboratory, 1991.

(责任编辑:张祚豪)