2014年2月

核动力工程 Nuclear Power Engineering

文章编号:0258-0926(2014)01-0014-05

# 采用 TVS-2M 组件的 VVER 堆芯燃料管理研究

## 王红霞,徐 敏

#### 中国核电工程有限公司,北京,100840

摘要:使用 KASKAD 程序包,对田湾核电站从首循环开始使用 TVS-2M 组件展开研究,提出相应的燃料组件设计。以此为基础展开燃料管理研究,提出3个燃料管理方案(年换料方案和两个长周期换料方案)。 对每个方案中堆芯的安全参数及其他重要参数进行分析,结果表明各种安全参数均满足设计要求。长周期的 换料方案是从首循环就开始使用 TVS-2M 组件,并且只经过2个循环的过渡,寿期长度便达到了长周期的要求。长周期换料方案可提高电厂的年均能力因子,并在整个堆芯寿期内减少大修次数,因而每年节约 30.8% 的大修费用,因此电厂的经济效益得以提高。

关键词:TVS-2M 组件;VVER;KASKAD;长周期;燃料管理 中图分类号:TL35 文献标志码:A

### 0 引 言

田湾核电站1号和2号机组将于2014年开始 逐步向18个月燃料循环过渡,以满足机组大修时 间的灵活性要求,提高年度负荷因子和电厂经济 效益。根据俄罗斯参考电厂的经验,实施长周期 换料需采用TVS-2M高性能燃料组件。田湾核电 站在正式转入过渡循环前,在1号机组第5循环 装入6组TVS-2M燃料组件,将经历第5至第8 循环运行,以验证新型组件的设计与实际性能, 以及两类组件在堆芯中的相容性。现在1号机组 运行到第6循环的寿期中,从堆内运行在线测量 以及换料大修的组件检查结果来看,TVS-2M 组 件的性能得到了充分的验证<sup>[1-2]</sup>。

TVS-2M 组件与 AFA 组件相比做了较多改 进。主要改进有:缩短上下管座高度,增加燃料 棒高度,同时增加芯块外径,减小了芯块中心孔 径,从而增加燃料装载量;定位格架与导向管改 为焊接方式固定,提高了燃料组件的结构稳定性; 定位格架与燃料棒的固定方式由线摩擦改为面摩 擦,增加了燃料棒的稳定性;上下管座结构加以 改进,提高了管座处的热工水力性能。通过上述 的改进,使TVS-2M 组件设计最大运行时间延长 到 40000 h,燃耗限值提高到 60 MW·d/kg (U)<sup>[1-2]</sup>。 田湾核电站 3、4 号机组正在计划从首循环开 始使用 TVS-2M 组件,并且后续循环可能采用长 周期的换料模式。因此,对田湾核电站开展从首 循环开始使用 TVS-2M 组件,并尽快进入长周期 燃料循环的研究,是具有重要意义和实际工程应用 价值的。

#### 1 计算程序简介

田湾核电站采用俄罗斯引进的 VVER 堆型, 也随带引进了堆芯计算程序包 KASKAD。 KASKAD 程序包主要由三维粗网堆芯计算程序 BIPR-7A、多层二维细网计算程序 PERMAK-A、 堆芯装载优化程序 PROROK、组件计算程序 TVS-M、堆芯功率恢复程序 PIR-A 及附加图表程 序 ALBUM、热工耦合程序 TEPRO 等<sup>[3]</sup>构成。

#### 2 应用 TVS-2M 组件

2.1 设计准则和目标

为保证核电厂的安全性, 堆芯核设计必须满 足下列设计准则和目标: 焓升因子 K<sub>r</sub> 1.6;

燃料棒线功率密度(考虑不确定性) 448 W/cm; 含钆燃料棒线功率密度(考虑不确 定性) 360 W/cm; 寿期初、热态零功率、零 氙、控制棒全部提出堆芯时的慢化剂温度系数小

收稿日期: 2012-12-11;修回日期: 2013-08-10

基金项目:国家国际科技合作专项资助项目(2011DFR60730)

于等于 0; 一束最大价值控制棒卡棒情况下,堆 芯重返临界温度不大于 120 ; 年换料平衡循环 寿期长度约 300 有效满功率天(EFPD); 长周 期平衡循环寿期长度约 480 EFPD; 组件的最大比 燃耗 60 MW·d/kg(U); 平衡循环实现低泄漏堆 芯装载<sup>[4]</sup>; 低泄漏堆芯装载是指新燃料组件多数 布置在离开堆芯边缘靠近堆芯中心区的位置。

#### 2.2 堆芯描述

VVER-1000 反应堆堆芯共装载了 163 个燃料 组件,堆芯活性段高度为 372.6 cm。表1 给出了 堆芯的总体参数。

| Table 1   Core Parameters           |       |
|-------------------------------------|-------|
| 参数名                                 | 参数值   |
| 堆芯燃料件数                              | 163   |
| 堆芯高度/cm                             | 372.6 |
| 堆芯功率/MWt                            | 3000  |
| 功率密度/kW·L <sup>·1</sup>             | 102.4 |
| 总流量/m <sup>3</sup> ·h <sup>-1</sup> | 81600 |
| 冷却剂压力/MPa                           | 15.7  |
| 冷却剂堆芯入口温度                           | 291   |
| 零功率冷却剂堆芯入口温度                        | 280   |

表1 堆芯总体参数

TVS-2M 型燃料组件包括 312 根燃料棒,18 个控制棒导向管,1 个中子温度测量管;共 331 个栅元。燃料组件的布置形状为六边形,组件中 心距为 23.6 cm,对边距为 23.51 cm<sup>[4]</sup>。

#### 2.3 组件设计

表 2 给出了本文的长周期换料方案中使用到 的部分燃料组件种类,其中 W 型和 U 型燃料组 件中钆棒的布置方式是来源于文献[4],46 型燃料 组件是作者自行研究和设计出的,为了满足使用 单一燃料富集度的要求。

2.4 堆芯燃料管理

本文给出 3 个燃料管理方案:年换料方案、

长周期方案 1 和长周期方案 2,以满足电厂不同 的需求。3 个方案均是在 VVER 反应堆首循环起 开始使用 TVS-2M 型燃料组件,采用部分低泄漏 的装载方式,经过若干循环的过渡,达到平衡循 环。3 个燃料管理方案的首循环堆芯装载是一样 的(图1)。年换料平衡循环的中心组件每3个循 环换一组新料36G7,图2是平衡循环堆芯装载图。



图 1 首循环堆芯装载图 (1/6 区域) Fig. 1 Cartogram of First Fuel Loading of All Fuel Managements (1/6 Sector) 第 1 行—燃料组件类型;第 2 行—燃料组件在上一循环的位 置;第 3 行—堆芯组件编号

长周期方案 1 的平衡循环装载了多种不同富 集度的燃料组件,这样的堆芯装载具有非常好的 经济性,在堆芯功率展平的同时,高富集度的燃 料组件可以达到非常深的燃耗。中心组件每两个 循环换一组新料 U44Z4,可以增加中心组件寿期 末的燃耗裕量,因而可以进行缩短或延伸运行, 具有很好的灵活性。图 3 是长周期方案 1 的平衡 循环堆芯装载图。

长周期方案2的平衡循环装载了单一富集度

| Table 2Description of FA Types |           |      |       |     |       |       |                 |            |  |  |
|--------------------------------|-----------|------|-------|-----|-------|-------|-----------------|------------|--|--|
|                                |           |      | 不同燃   | 然料棒 | 含钆燃料棒 |       |                 |            |  |  |
| 燃料组件类型                         | 燃料平均富集度/% | 类型 1 |       | 类型  | 型 2   | += *6 | <b>宣传</b> 南 (a) |            |  |  |
|                                |           | 棒数   | 富集度/% | 棒数  | 富集度/% | 怿蚁    | 备朱戌/%           | GU2O3 召重/% |  |  |
| W39D8                          | 3.884     | 234  | 4.0   | 60  | 3.6   | 18    | 3.3             | 5          |  |  |
| W43E6                          | 4.308     | 246  | 4.4   | 60  | 4.0   | 6     | 3.6             | 5          |  |  |
| U49G6                          | 4.925     | 306  | 4.95  | —   | —     | 6     | 3.6             | 5          |  |  |
| U40Y8                          | 3.979     | 294  | 4.0   | —   | —     | 18    | 3.6             | 8          |  |  |
| U49Z4                          | 4.855     | 288  | 4.95  | —   | —     | 24    | 3.6             | 8          |  |  |
| 46-6                           | 4.575     | 306  | 4.6   | _   | —     | 6     | 3.6             | 8          |  |  |
| 46-18                          | 4.526     | 294  | 4.6   | _   | _     | 18    | 3.6             | 8          |  |  |

表 2 组件类型描述 Table 2 Description of FA Tyr



图 2 年换料平衡循环装载图 (1/6 区域)





Fig. 3 Cartogram of Equilibrium Fuel loading of Long Fuel Cycle 1 (1/6 Sector)

的燃料组件,只是每一种组件的含钆棒数目不同; 这样可以减少燃料制造的困难,增加燃料制造的 效率,减少燃料的制造成本,从燃料制造方面看 也具有非常好的经济性。中心组件每两个循环换 一组新料 46-18,可以增加中心组件寿期末的燃耗 裕量,具有很好的灵活性。图4是长周期方案2 的平衡循环堆芯装载图。

3 计算结果

3.1 首循环至平衡循环

各循环的燃耗计算是在堆芯满功率(HFP) 工作棒处于90%、其他控制棒全提的状态下进行, 通过调整堆芯硼浓度维持堆芯临界状态,循环寿 期末临界硼浓度定为零。计算慢化剂温度系数的 堆芯状态是堆芯零功率(HZP)、控制棒全提



Fig. 4 Cartogram of Equilibrium Fuel Loading of Long Fuel Cycle (1/6 Sector)

(ARO) 寿期初(BOL)<sup>[5]</sup>。

表 3~表 5 分别给出了 3 种燃料管理方案的主要计算结果。各种安全参数满足设计准则,平衡 循环的寿期长度满足相应的目标。

3.2 计算结果分析

从表 3 ~表 5 可以看出,所有方案的堆芯慢 化剂温度系数都为负,卸料组件最大比燃耗都小 于比燃耗限值 60 MW·d/kg(U);考虑计算不确定 性下燃料棒的线功率密度小于限值 448 W/cm,含 钆棒的线功率密度小于限值 360 W/cm。VVER 核 电厂的堆芯停堆裕量用重返临界温度来描述:除 了最大反应性价值的一束控制棒完全卡死在堆芯 外,其余控制棒插入堆芯,堆芯硼浓度、氙和钐 浓度保持不变,堆芯平均温度下降至堆芯重新达 到临界时的温度,以上所有方案的重返临界温度 都小于限值 120 。总而言之,所有的安全参数 都满足设计准则,平衡循环的寿期长度也达到了 设计要求。

运行时间为 T<sub>o</sub>,大修时间为 T<sub>r</sub>,则年均能力 因子为 T<sub>o</sub>/(T<sub>o</sub>+T<sub>r</sub>)。田湾核电站机组大修时间大约 为 40 d,寿期长度年换料方案平衡循环寿期平均 长度(考虑中心组件)为 323.4 EFPD,年均能力 因子为 89.0%,长周期方案 1 平衡循环寿期平均 长度(考虑中心组件)为 484.2 EFPD,年均能力 因子为 92.4%,长周期方案 2 平衡循环寿期平均长 度(考虑中心组件)为 480.5 EFPD,年均能力因子 为 92.3%。可以看出,长周期方案年均能力因子显 著增加,因而可以大幅增加电厂的经济效益。

长周期方案2的燃料利用率和方案1的差不

|                                    | -      |        |        |        | -      | -      |        |        |  |
|------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--|
| 堆芯参数                               | 循环     |        |        |        |        |        |        |        |  |
|                                    | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      |  |
| 装入堆芯新料组件总数目                        | 163    | 54     | 49     | 48     | 48     | 49     | 48     | 48     |  |
| 新燃料组件 <sup>235</sup> U平均富集度/%      | 2.440  | 3.781  | 3.871  | 3.926  | 3.926  | 3.919  | 3.926  | 3.926  |  |
| 新燃料组件中含 Gd 棒总数目                    | 559    | 378    | 259    | 252    | 252    | 259    | 252    | 252    |  |
| 寿期长度/EFPD                          | 325.51 | 312.30 | 327.38 | 316.24 | 321.01 | 326.68 | 321.82 | 321.64 |  |
| 卸料组件平均燃耗/MW·d·kg <sup>-1</sup> (U) | 12.24  | 25.82  | 34.45  | 40.91  | 42.55  | 43.69  | 43.48  | 43.33  |  |
| 卸料组件最大燃耗/MW·d·kg <sup>-1</sup> (U) | 12.39  | 26.26  | 40.27  | 42.21  | 45.13  | 46.56  | 45.51  | 45.87  |  |
| 最大组件功率峰因子                          | 1.229  | 1.324  | 1.334  | 1.331  | 1.329  | 1.344  | 1.330  | 1.325  |  |
| 最大燃料棒功率峰因子                         | 1.410  | 1.454  | 1.457  | 1.471  | 1.483  | 1.475  | 1.461  | 1.468  |  |
| 最大燃料棒线功率密度 /W·cm <sup>·1</sup>     | 379.1  | 331.3  | 342.1  | 343.5  | 345.4  | 337.6  | 339.7  | 342.7  |  |
| 最大含钆棒线功率密度 / W·cm <sup>-1</sup>    | 255.8  | 275.9  | 282.4  | 282.2  | 280.1  | 281.3  | 280.8  | 281.1  |  |
| 慢化剂温度系数/10 <sup>-5</sup>           | -5.99  | -1.52  | -0.78  | -3.15  | -2.93  | -1.97  | -2.59  | -2.71  |  |
| 卡最大价值棒重返临界温度/                      | 37     | <20    | <20    | <20    | <20    | <20    | <20    | <20    |  |

#### 表 3 燃料管理主要计算结果 (年换料)

Table 3 Primary Calculation Results of Fuel Management (Yearly Fuel Cycle)

表4 燃料管理主要计算结果(长周期方案1)

 Table 4
 Primary Calculation Results of Fuel Management (Long Fuel Cycle Loading 1)

| 堆芯参数                               | 循环     |        |        |       |        |        |        |        |  |
|------------------------------------|--------|--------|--------|-------|--------|--------|--------|--------|--|
|                                    | 1      | 2      | 3      | 4     | 5      | 6      | 7      | 8      |  |
| 装入堆芯新料组件总数目                        | 163    | 60     | 67     | 66    | 67     | 66     | 67     | 66     |  |
| 新燃料组件 <sup>235</sup> U平均富集度/%      | 2.440  | 4.094  | 4.462  | 4.569 | 4.565  | 4.569  | 4.565  | 4.569  |  |
| 新燃料组件中含 Gd 棒总数目                    | 559    | 792    | 1242   | 1152  | 1176   | 1152   | 1176   | 1152   |  |
| 寿期长度/EFPD                          | 325.51 | 355.39 | 455.09 | 501.4 | 480.66 | 482.86 | 486.59 | 481.83 |  |
| 卸料组件平均燃耗/MW·d·kg <sup>·1</sup> (U) | 12.46  | 26.06  | 40.16  | 42.19 | 45.70  | 47.53  | 47.53  | 47.33  |  |
| 卸料组件最大燃耗/MW·d·kg <sup>-1</sup> (U) | 14.44  | 29.68  | 45.54  | 46.33 | 52.33  | 54.68  | 53.57  | 53.78  |  |
| 最大组件功率峰因子                          | 1.229  | 1.325  | 1.321  | 1.346 | 1.352  | 1.354  | 1.342  | 1.352  |  |
| 最大燃料棒功率峰因子                         | 1.41   | 1.456  | 1.474  | 1.484 | 1.486  | 1.493  | 1.491  | 1.476  |  |
| 最大燃料棒线功率密度 /W·cm <sup>-1</sup>     | 379.1  | 318.9  | 343.2  | 335.5 | 348.7  | 342.7  | 347.0  | 344.5  |  |
| 最大含钆棒线功率密度 /W·cm <sup>·1</sup>     | 255.8  | 295.1  | 293.6  | 293.6 | 300.7  | 291.0  | 289.1  | 290.8  |  |
| 慢化剂温度系数/10 <sup>-5</sup>           | -5.99  | -4.17  | -5.84  | -0.52 | -1.73  | -0.95  | -1.14  | -1.40  |  |
| 卡最大价值棒重返临界温度                       | 37     | 58     | 57     | <20   | <20    | <20    | <20    | <20    |  |

#### 表 5 燃料管理主要计算结果 (长周期方案 2)

 Table 5
 Primary Calculation Results of Fuel Management (Long Fuel Cycle Loading 2)

| 堆芯参数                               | 循环     |        |        |        |        |        |        |        |  |
|------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--|
|                                    | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      |  |
| 装入堆芯新料组件总数目                        | 163    | 60     | 61     | 66     | 67     | 66     | 67     | 66     |  |
| 新燃料组件 <sup>235</sup> U平均富集度/%      | 2.440  | 4.094  | 4.559  | 4.543  | 4.550  | 4.550  | 4.550  | 4.550  |  |
| 新燃料组件中含 Gd 棒总数目                    | 559    | 792    | 852    | 1260   | 1134   | 1116   | 1134   | 1116   |  |
| 寿期长度/EFPD                          | 325.51 | 355.39 | 446.92 | 483.84 | 484.35 | 476.73 | 483.06 | 477.90 |  |
| 卸料组件平均燃耗/MW·d·kg <sup>-1</sup> (U) | 12.46  | 26.63  | 38.69  | 44.42  | 46.36  | 47.04  | 47.14  | 46.98  |  |
| 卸料组件最大燃耗/MW·d·kg <sup>-1</sup> (U) | 14.44  | 29.68  | 44.14  | 53.13  | 52.32  | 52.76  | 52.57  | 52.47  |  |
| 最大组件功率峰因子                          | 1.229  | 1.325  | 1.317  | 1.291  | 1.304  | 1.307  | 1.302  | 1.310  |  |
| 最大燃料棒功率峰因子                         | 1.410  | 1.456  | 1.444  | 1.453  | 1.475  | 1.461  | 1.456  | 1.470  |  |
| 最大燃料棒线功率密度 /W·cm <sup>-1</sup>     | 379.1  | 318.9  | 338.4  | 329.4  | 353.6  | 349.9  | 346.5  | 352.3  |  |
| 最大含钆棒线功率密度 /W·cm <sup>·1</sup>     | 255.8  | 295.1  | 288.5  | 280.0  | 279.3  | 281.3  | 277.7  | 282.1  |  |
| 慢化剂温度系数/10 <sup>-5</sup>           | - 5.99 | -4.17  | -0.72  | -1.56  | -1.17  | -1.51  | -1.10  | -1.60  |  |
| 卡最大价值棒重返临界温度/                      | 37     | 58     | <20    | <20    | <20    | <20    | <20    | <20    |  |

注: 考虑了不确定性(表 3~表 5)

多,并且采用单一富集度的燃料组件,这样可以 减少燃料制造的困难,可以增加燃料制造的效率, 从而可以减少燃料的制造成本。降低了组件最高 富集度,因此还可以减少新燃料和乏燃料运输时 的安全问题。

从表 3~表 5 还可以看出,长周期换料的平均 换料组件数更少,但长周期采用的燃料组件平均 富集度提高,燃料费用的优劣还需进一步分析。

长周期换料在整个堆芯寿期内减少大修次数,因而长周期换料方案平均每年可以节约 30.8%的大修费用,因此提高了电厂的经济效益。

4 结束语

本文使用 KASKAD 程序包,对 VVER 堆芯 采用 TVS-2M 燃料组件的燃料管理进行初步研究 和设计,给出了3种满足电厂不同寿期需求的方 案。每个方案都采用了部分低泄漏的装置方式, 堆芯主要安全特性参数都满足设计准则和目标, 特别是长周期换料方案具有很好的机动性,也具 有相当的经济性。长周期的换料方案是从首循环 就开始使用 TVS-2M 组件,并且只经过 2 个循环 的过渡,寿期长度便达到了长周期的要求,该研 究成果可以提高电厂的年均能力因子,节约大修 费用,从而显著提高电厂的经济效益。

参考文献:

- [1] 李友谊,杨晓强,李文双,等.田湾核电站堆芯燃料管 理简介[C].西安:第十三届反应堆数值计算与粒子输 运学术会议暨2010年反应堆物理会议论文集,2010.
- [2] 李友谊,杨晓强,李文双,等.田湾核电站1号机组第6 循环堆芯装载策略及验证[J].原子能科学技术, 2013,47:160-163.
- [3] Kaskad Application Framework User Manual Code Description [R]. Moscow: KURCHATOV INSTITUE, 2006.
- [4] Calculation of Neutron Physics Characteristics of Transient Fuel Cycles, Beginning from the 8<sup>th</sup> Fuel Cycle, with Reaching the Equilibrium Fuel Cycle of TNPS, Units 1&2 (Version B) [R].Russia: NATIONAL RESEARCH CENTRE "KURCHATOV INSTITUE", 2011.
- [5] 谢仲生. 核反应堆物理分析[M]. 北京:原子能出版社. 2005.

## Research of Core Fuel Management Using TVS-2M Fuel Assemblies in VVER

#### Wang Hongxia, Xu Min

#### China Nuclear Power Engineering Co., Ltd, Beijing, 100840, China

Abstract: Using KASKAD program package, the author make a research about the Tianwan nuclear power plant loading TVS-2M fuel assembly from the first cycle, also design the TVS-2M fuel assembly and on this basis, study fuel management, obtaining three fuel management cases, including year fuel cycle case and two long fuel cycle cases. In each program, the important parameters of the reactor core are analyzed and all the safety parameters meet the design requirements. In long fuel cycle program, TVS-2M is using from the first cycle and after the transition of only two cycles, the length of cycle reached the requirement of long period. The increased average annual capacity factor of the plant and the decreased times of overhaul during the core's life which saving 30.8 percentage of the overhaul cost due to the long fuel cycle can largely improve the economic efficiency of the plant.

Key words: TVS-2M assembly, VVER, KASKAD, Long fuel cycle, Fuel management

#### 作者简介:

王红霞 (1978—), 女, 高级工程师。2003 年毕业于西安交通大学, 获工学硕士学位。现从事反应堆物理研究工作。 徐 敏 (1985—), 男, 工程师。 2010 年毕业于核工业第二研究设计院, 获工学硕士学位。现从事反应堆数值计 算和核物理专业的研究工作。

(责任编辑:杨洁蕾)