Abstract:
In order to study the accuracy of the prediction of flow field distribution in bundle channels using Computational Fluid Dynamics(CFD) methods, STAR-CCM+ code is utilized to analyze the single-phase 4×4 bundle flow experiments conducted by Korea Atomic Energy Research Institute. Based on generating meshing scheme determined by meshing sensitivity study, standard k-ε(SKE), realized k-ε(RKE), standard k-ω(SKW) and SST turbulence model are adopted to simulate the bundle flow, and comparisons are conducted for the simulation results and experimental data for lateral and axial velocity. The results show that, four turbulence models can well predict velocity field distribution inside the bundle channels, the relative deviation for SKE and RKE is 19.6% to predict the lateral velocity, and SKE is better for simulating the lateral velocity analysis at zone near grids, otherwise RKE is better. For axial velocity prediction, SKE simulation is with the minimum relative deviation of 4.9%. All four models underestimate RMS velocities, but can predict RMS velocity distribution law inside the bundle channels, and RKE is suitable for near-grid zone, otherwise SST is suitable. The results provide references to the set-up of best practice guide for CFD analysis of single-phase bundle flow.