Abstract:
To study the flow and heat transfer characteristics of the primary and secondary sides of the helical coil once-through tube steam generator (HCOTSG) under steady state conditions, taking HCOTSG of International Reactor Innovative and Secure (IRIS) as the research object, a primary and secondary sides heat balance calculation model for steady state operation of HCOTSG is established. The influence of different secondary side feed water flow rate on HCOTSG thermal and hydraulic parameters under steady-state condition is analyzed, and the detailed thermal and hydraulic parameters in the helical tube under steady-state condition are calculated by combining the coupled thermal analysis model with the three-dimensional flow and heat exchange calculation of CFX. The relevant thermal and hydraulic parameters along the tube side of HCOTSG during steady-state operation are calculated by the thermal analysis model. The CFX simulation results show that the velocity and temperature distribution of the fluid in the cross section of the helical tube are not uniform. The temperature of the fluid inside the helix is higher than that outside the helix. The velocity of the fluid inside the helix is lower than that outside the helix. The boiling of the fluid inside the helix occurs earlier than that outside the helix. Therefore, this study has a guiding role in the accident analysis for HCOTSG steady-state operation and spiral heat exchange tube.