Heat Transfer Performance of Heat Pipe for Passive Cooling of Spent Fuel Pool
-
摘要: 大尺度分离式热管具有无需电力驱动、换热效率高的特点,可用于断电事故后乏燃料水池非能动冷却,能有效提高核电厂的安全性能。针对大尺度分离式热管的传热特性开展实验研究,获得热管蒸发段外侧加热水流速0.007~0.02 m/s,加热水温度50~90℃,冷凝段冷却空气速度0.5~2.5 m/s参数范围下换热量、蒸发段平均换热系数、工作温度、工作压力以及循环流量随冷凝段风速、蒸发段热源进口温度和速度的变化规律。结果表明,大尺度热管的最大换热量达到20.1 kW。参数的敏感性分析表明,热源温度和热源流速对热管的循环流量、换热量具有显著的影响。冷凝段外冷却空气速度超过1.5 m/s后,其对分离式热管的影响相对较小。Abstract: A large-scale loop heat pipe has no electricity driven component and high efficiency of heat transfer. It can be used for the passive cooling of the SFP after SBO to improve the safety performance of nuclear power plants. In this paper, such a large-scale loop heat pipe is studied experimentally. The heat transfer rate, evaporator average heat transfer coefficient, operating temperature, operating pressure and ammonia flow rate have been obtained with the water flow ranging from 0.007m/s to 0.02m/s outside the evaporator section, heating water temperature in the range of 50 to 90℃, air velocity outside the condensation section ranging from 0.5 to 2.5 m/s. It is found that the heat transfer rate reaches as high as 20.1 kW. Parametric analysis indicates that the heat transfer rate and ammonia flow rate are influenced significantly by hot water inlet temperature and velocity, while beyond 1.5m/s, the effect of air velocity outside the condensation section is minor.
-
计量
- 文章访问数: 11
- HTML全文浏览量: 4
- PDF下载量: 0
- 被引次数: 0