Application of Regularized Radial Basis Function Neural Network in Core Axial Power Distribution Reconstruction
-
摘要: 将正则化径向基函数(RBF)神经网络应用于堆芯轴向功率分布重构,通过6节堆外中子探测器的读数值重构堆芯轴向功率分布。使用ACP-100模块式小堆的7740套功率分布以及对应的模拟堆外探测器读数,对RBF神经网络重构方法进行了验证,结果表明:正则化RBF神经网络重构方法可以精确地重构出堆芯轴向功率分布,并且具有良好的鲁棒性,可以克服功率分布重构问题所固有的不适定性。
-
关键词:
- 正则化RBF神经网络 /
- 轴向功率分布重构 /
- 堆外探测器
Abstract: The core axial power shape reconstruction method based on the regularized radial basis function neural network(r RBFNN) is proposed, and the axial power distribution can be reconstructed from 6-segment ex-core detector signals. The 7740 axial power distributions of ACP-100 modular reactor and the corresponding simulated ex-core detector readings are used to verify the r RBFNN reconstruction method. The results show that r RBFNN reconstruction method can reconstruct the core axial power distribution accurately, and this method is robust enough to deal with the inherent ill-posedness of the power distribution reconstruction problem. -
计量
- 文章访问数: 9
- HTML全文浏览量: 3
- PDF下载量: 0
- 被引次数: 0