A Machine Learning Based System Performance Prediction Model for Small Reactors
-
摘要: 为支持小型可移动高温熔盐堆(TFHR)自动控制系统的开发,提出了一种基于机器学习的反应堆状态预测模型,以根据仪控系统的监测数据评估反应堆当前状态并预测其未来发展。该模型由一个反应堆物理子模型和热工子模型构成,由TFHR一回路的RELAP模型生成训练数据,通过支持向量回归(SVR)训练得到,并采用粒子滤波(PF)方法估计其中的未知模型参数。通过TFHR反应性引入事故的测试算例表明,本文提出的预测模型在预测反应堆状态、估计模型参数(如反应性引入率)等方面具有良好的性能。Abstract: To support the development of autonomous control system for the Transportable Fluoride-salt-cooled High-temperature Reactor(TFHR), a machine learning based reactor system performance prediction model is created. The prediction model consists of a reactor physics model and a thermal-hydraulic model, which are formulated using support vector machine(SVR) with training data generated by a RELAP model of TFHR primary system. A particle filtering method is used to estimate the model parameters with noisy instrument measurements. Verifications of the proposed models have been conducted using TFHR reactivity insertion events. Satisfactory performance in predicting the core behavior and estimating model parameters are concluded.
-
Key words:
- Machine learning /
- Performance prediction /
- Particle filtering /
- Reactor control
-
计量
- 文章访问数: 23
- HTML全文浏览量: 8
- PDF下载量: 0
- 被引次数: 0