Shock and Vibration Assessment of Aircraft Impact on Nuclear Power Plant Considering the Nonlinear of Impact Zone and Soil-Structure Interaction
-
摘要: 给出一种简化的飞机撞击核电厂振动效应的评估方法,首先给出了2种飞机撞击荷载模拟方法(力-时程法和飞射物-标靶相互作用法)所产生的核电厂振动响应特性及其传播规律;随后重点分析了核电厂撞击区材料非线性和土-结构的相互作用对核岛内部振动响应的影响;最后结合核电厂抗震裕度评价工作,给出了振动响应对核电厂核岛内部安全相关系统、设备和部件影响的评估实例。结果表明:2种飞机撞击荷载模拟方法所得核电厂撞击区最大变形及其变化规律基本一致,但飞射物-标靶相互作用法将包含更多的高频分量;随振动传播距离的增加,振动响应(特别是高频分量)衰减显著,且2种撞击荷载模拟方法所得响应将逐渐趋于一致。当考虑撞击区材料非线性后,飞机撞击核电厂所产生的振动响应将明显低于线性分析的结果;当进一步考虑土-结构相互作用后,其振动响应还将进一步减小;裕度地震反应谱可作为振动响应评估的参考准则。Abstract: A simplified methodology for assessing the shock and vibration effects of the aircraft impact on nuclear power plant(NPP) is discussed in this paper. Both the force time-history method(FTHM) and the missile-target interaction method(MTIM) are used to assess NPP shock response and its propagation. Then, the effects of both the material nonlinearity and the soil-structure interaction(SSI) on NPP in-structure shock response spectra are presented. Finally, an example of assessing the shock effects on the safety-related system, equipment, and component is provided based on NPP seismic margin assessment. The results show that the maximum displacement and the displacement time history of the NPP impact location obtained from both the FTHM and MTIM are almost the same, but the response spectrum obtained from the MTIM show more high frequency energy than those from FTHM. The shock response will obviously decrease as the shock propagation distance increases, and the difference between the in-structure response spectra obtained from these two methods will also decrease. Both the material nonlinearity and SSI will significantly reduce the NPP shock response, and the response spectrum of the seismic margin assessment can be used as the acceptance criteria for the shock assessment.
-
Key words:
- Aircraft impact /
- Shock and vibration /
- Nonlinear /
- Soil-structure interaction /
- Seismic margin analysis
-
计量
- 文章访问数: 271
- HTML全文浏览量: 48
- PDF下载量: 4
- 被引次数: 0