高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稳定蒸汽浸没射流冷凝传热系数评价

王珏 陈力生 刘建阁 胡晨 蔡琦

王珏, 陈力生, 刘建阁, 胡晨, 蔡琦. 稳定蒸汽浸没射流冷凝传热系数评价[J]. 核动力工程, 2021, 42(4): 27-32. doi: 10.13832/j.jnpe.2021.04.0027
引用本文: 王珏, 陈力生, 刘建阁, 胡晨, 蔡琦. 稳定蒸汽浸没射流冷凝传热系数评价[J]. 核动力工程, 2021, 42(4): 27-32. doi: 10.13832/j.jnpe.2021.04.0027
Wang Jue, Chen Lisheng, Liu Jiange, Hu Chen, Cai Qi. Evaluation of Condensation Heat Transfer Coefficient of Stable Steam Jet Submerged in Water[J]. Nuclear Power Engineering, 2021, 42(4): 27-32. doi: 10.13832/j.jnpe.2021.04.0027
Citation: Wang Jue, Chen Lisheng, Liu Jiange, Hu Chen, Cai Qi. Evaluation of Condensation Heat Transfer Coefficient of Stable Steam Jet Submerged in Water[J]. Nuclear Power Engineering, 2021, 42(4): 27-32. doi: 10.13832/j.jnpe.2021.04.0027

稳定蒸汽浸没射流冷凝传热系数评价

doi: 10.13832/j.jnpe.2021.04.0027
基金项目: 国家重点研发计划(2017YFC0307800)
详细信息
    作者简介:

    王 珏(1989—),男,工程师,博士研究生,现从事核安全与核应急研究工作,E-mail: wangjuebey@sina.com

  • 中图分类号: TL334

Evaluation of Condensation Heat Transfer Coefficient of Stable Steam Jet Submerged in Water

  • 摘要: 为分析稳定蒸汽浸没射流的传热特性,对3类典型冷凝传热系数开展评价。结果表明:平均传热系数实验值精度主要受界面面积计算模型影响,由冷凝驱动势和蒸汽质量流速表征的传统半经验关系式在不同孔径下的预测偏差较大,新增排放孔径为独立拟合变量的纯经验关系式适用范围更广且误差在±30%以内;界面传热系数的预测精度主要受汽羽微观参数取值的影响;由压力振荡主频表征的无量纲传热系数在低池水过冷度下与实验值偏差较大,关系式中纳入汽羽贯穿长度后,预测趋势与实验值类似。

     

  • 图  1  平均传热系数实验值分布[11-13]

    Figure  1.  Experimental Data of Average HTC[11-13]

    图  2  传热系数的湍流强度模型预测值与实验值的比较

    Figure  2.  Comparison of Predicted HTC by Turbulence Model with Experimental Data

    图  3  传热系数的表面更新及剪切应力模型预测值与实验值的比较

    Figure  3.  Comparison of Predicted HTC by Surface Renewal and Shear Stress Models with Experimental Data

    图  4  无量纲传热系数预测值与实验值的比较

    Figure  4.  Comparison of Predicted Dimensionless HTC with Experimental Data

  • [1] SONG C H, KIM Y S. Direct contact condensation of steam jet in a pool[J]. Advances in Heat Transfer, 2011(43): 227-288.
    [2] CHO S, SONG C H, PARK C K, et al. Experimental study on dynamic pressure pulse in direct contact condation of steam jets discharging into subcooled water[C]//Proceedings of the 1st Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety. Pusan: Korean Nuclear Society, 1998: 291-298.
    [3] AYA I, NARIAI H. Evaluation of heat-transfer coefficient at direct-contact condensation of cold water and steam[J]. Nuclear Engineering and Design, 1991, 131(1): 17-24. doi: 10.1016/0029-5493(91)90314-8
    [4] CUMO M, FARELLO G E, FERRARI G. Heat transfer in condensing jets of steam in water (pressure-suppresure systems): RT/ING(77)8[R]. Italy, Roma: Comitato Nazionale Energia Nucleare, 1977.
    [5] SIMPSON M E, CHAN C K. Hydrodynamics of a subsonic vapor jet in subcooled liquid[J]. Journal of Heat Transfer, 1982, 104(2): 271-278. doi: 10.1115/1.3245083
    [6] 孙露,师二兵,郝锐,等. 音速浸没射流气羽特性实验研究[J]. 原子能科学技术,2018, 52(5): 834-838. doi: 10.7538/yzk.2017.youxian.0537
    [7] KIM Y S, PARK J W, SONG C H. Investigation of the stem-water direct contact condensation heat transfer coefficients using interfacial transport models[J]. International Communications in Heat and Mass Transfer, 2004, 31(3): 397-408. doi: 10.1016/j.icheatmasstransfer.2004.02.010
    [8] 武心壮,黄秀杰,邱斌斌,等. 蒸汽射流凝结换热系数计算的一种新方法[J]. 核动力工程,2015, 36(6): 41-44.
    [9] QIU B B, YAN J J, REVANKAR S T, et al. Pressure oscillation and a new method to calculate the heat transfer coefficient for steam jet condensation[J]. International Journal of Heat and Mass Transfer, 2017, 104: 1152-1159. doi: 10.1016/j.ijheatmasstransfer.2016.09.045
    [10] HONG S J, PARK G C, CHO S, et al. Condensation dynamics of submerged steam jet in subcooled water[J]. International Journal of Multiphase Flow, 2012(39): 66-77. doi: 10.1016/j.ijmultiphaseflow.2011.10.007
    [11] KIM H Y, BAE Y Y, CHO H B, et al. A study on the behavior of bubble in quenching tank and optimal sparger design: KAERI/TR-962/98[R]. Daejeon, South Korea: Korea Atomic Energy Research Institute, 1998.
    [12] KIM H Y, BAE Y Y, SONG C H, et al. Experimental study on stable steam condensation in a quenching tank[J]. International Journal of Energy Research, 2001, 25(3): 239-252. doi: 10.1002/er.675
    [13] CHUN M H, KIM Y S, PARK J W. An investigation of direct condensation of steam jet in subcooled water[J]. International Communications in Heat and Mass Transfer, 1996, 23(7): 947-958. doi: 10.1016/0735-1933(96)00077-2
    [14] KERNEY P J, FAETH G M, OLSON D R. Penetration characteristics of a submerged steam jet[J]. AIChE Journal, 1972, 18(3): 548-553. doi: 10.1002/aic.690180314
    [15] GULAWANI S S, JOSHI J B, SHAH M S, et al. CFD analysis of flow pattern and heat transfer in direct contact steam condensation[J]. Chemical Engineering Science, 2006, 61(16): 5204-5220. doi: 10.1016/j.ces.2006.03.032
  • 加载中
图(4)
计量
  • 文章访问数:  426
  • HTML全文浏览量:  150
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-04
  • 修回日期:  2020-08-16
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回