高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

严重事故下多组分吸湿性气溶胶的重力沉降研究

卢俊晶 毛亚蔚 张天琦 朱柏霖 杨小明 马如冰

卢俊晶, 毛亚蔚, 张天琦, 朱柏霖, 杨小明, 马如冰. 严重事故下多组分吸湿性气溶胶的重力沉降研究[J]. 核动力工程, 2021, 42(4): 80-85. doi: 10.13832/j.jnpe.2021.04.0080
引用本文: 卢俊晶, 毛亚蔚, 张天琦, 朱柏霖, 杨小明, 马如冰. 严重事故下多组分吸湿性气溶胶的重力沉降研究[J]. 核动力工程, 2021, 42(4): 80-85. doi: 10.13832/j.jnpe.2021.04.0080
Lu Junjing, Mao Yawei, Zhang Tianqi, Zhu Bolin, Yang Xiaoming, Ma Rubing. Study on Gravity Sedimentation of Multicomponent Hygroscopic Aerosols in Reactor Severe Accident[J]. Nuclear Power Engineering, 2021, 42(4): 80-85. doi: 10.13832/j.jnpe.2021.04.0080
Citation: Lu Junjing, Mao Yawei, Zhang Tianqi, Zhu Bolin, Yang Xiaoming, Ma Rubing. Study on Gravity Sedimentation of Multicomponent Hygroscopic Aerosols in Reactor Severe Accident[J]. Nuclear Power Engineering, 2021, 42(4): 80-85. doi: 10.13832/j.jnpe.2021.04.0080

严重事故下多组分吸湿性气溶胶的重力沉降研究

doi: 10.13832/j.jnpe.2021.04.0080
基金项目: 国家重点研发计划资助(2019YFB1900704)
详细信息
    作者简介:

    卢俊晶(1991—),男,硕士研究生,现从事核电厂气溶胶与裂变产物研究,E-mail: lujunjing_1991@163.com

    通讯作者:

    毛亚蔚,E-mail: mao_yawei20050816@163.com

  • 中图分类号: TL364.4

Study on Gravity Sedimentation of Multicomponent Hygroscopic Aerosols in Reactor Severe Accident

  • 摘要: 严重事故时,安全壳内的多组分吸湿性气溶胶将在高湿度的条件下吸水增大,从而影响其重力沉降行为。通过理论分析,本文推导了多组分吸湿性气溶胶颗粒平衡粒径的物理模型,并通过实验结果进行验证。该模型重点关注溶解度对吸湿过程的影响,解释了多组分吸湿性颗粒粒径增大曲线不连续的原因。同时,分析了典型千兆瓦级压水堆核电厂中相对湿度、干粒径及非吸湿性组分质量分数对重力沉降去除系数的影响。结果表明,只有当气溶胶颗粒增大到一定程度后,其重力沉降速度才会明显的提高;对于干粒径超过0.01 μm的纯吸湿性气溶胶颗粒,只有超过一定湿度后其才会因吸湿而加速沉降,且该湿度下限随着干粒径的增大而减小;随着事故的进行,气溶胶颗粒中的非吸湿性组分质量分数逐渐增加,上述湿度下限将增加,且同湿度下吸湿对重力沉降的促进作用减弱。

     

  • 图  1  气溶胶颗粒中有2种吸湿性组分时函数aw(dp)与函数g(dp)的示意图

    Figure  1.  Schematic Diagram of Function aw(dp) and Function g(dp) when Aerosol Particle Contains two Components

    图  2  KCl和NaCl组成的多组分颗粒的相对质量随相对湿度的变化

    Figure  2.  Relative Mass of Multicomponent Particle Including KCl and NaCl Changing with Relative Humidity

    图  3  干粒径为1 μm的多组分CsI与CsOH气溶胶颗粒的相对粒径和相对去除系数随相对湿度的变化

    Figure  3.  Relative Particle Diameters and Relative Removal Coefficients of Multicomponent CsI and CsOH Aerosol Particles with Dry Particle Diameter of 1 μm Changing with Relative Humidity

    图  4  多组分CsI与CsOH气溶胶颗粒的相对去除系数随相对湿度和干粒径的变化

    Figure  4.  Relative Removal Coefficients of Multicomponent CsI and CsOH Aerosol Particles Changing with Relative Humidity and Dry Particle Diameters

    图  5  干粒径为1 μm的多组分气溶胶颗粒的相对去除系数随相对湿度和BaO质量分数的变化

    Figure  5.  Relative Removal Coefficients of Multicomponent Aerosol Particles with the Dry Particle Diameter of 1 μm Changing with Relative Humidity and Mass Fraction of BaO

    表  1  1100 MW压水堆中不同核素的堆芯积存量

    Table  1.   Inventories of Different Elements in a Typical 1100 MW Pressurized Water Reactor

    物质来源积存量/kg
    UO2燃料1.00×105
    Zr包壳2.00×104
    Sn包壳3.00×102
    Fe结构材料2.50×103
    I裂变产物1.80×101
    Cs裂变产物2.55×102
    Ba裂变产物4.16×102
    Ru裂变产物3.18×102
    Zr裂变产物2.76×102
    下载: 导出CSV
  • [1] SEHGAL B R. Nuclear safety in light water reactors: severe accident phenomenology[M]. Waltham: Academic Press, 2012: 496-498.
    [2] Organization for Economic Co-operation and Development. State-of-the-art report on nuclear aerosols: NEA/CSNI/R(2009)5[R]. Paris: OECD, Nuclear Energy Agency, 2009.
    [3] 卢俊晶,张天琦,杨小明,等. 严重事故下吸湿性气溶胶的自然去除研究[J]. 核动力工程,2020, 41(1): 145-149.
    [4] SOFFER L, BURSON S B, FERRELL C M, et al. Accident source terms for light-water nuclear power plants: NUREG-1465[R]. Washington, DC: U. S. Nuclear Regulatory Commission, 1995.
    [5] FUKUTA N, WALTER L A. Kinetics of hydrometeor growth from a vapor-spherical model[J]. Journal of the Atmospheric Sciences, 1970, 27(8): 1160-1172. doi: 10.1175/1520-0469(1970)027<1160:KOHGFA>2.0.CO;2
    [6] JOKINIEMI J. Effect of selected binary and mixed solutions on steam condensation and aerosol behavior in containment[J]. Aerosol Science and Technology, 1990, 12(4): 891-902. doi: 10.1080/02786829008959401
    [7] BRECHTEL F J, KREIDENWEIS S M. Predicting particle critical supersaturation from hygroscopic growth measurements in the humidified TDMA. Part I: theory and sensitivity studies[J]. Journal of the Atmospheric Sciences, 2000, 57(12): 1854-1871. doi: 10.1175/1520-0469(2000)057<1854:PPCSFH>2.0.CO;2
    [8] TANG I N. Phase transformation and growth of aerosol particles composed of mixed salts[J]. Journal of Aerosol Science, 1976, 7(5): 361-371. doi: 10.1016/0021-8502(76)90022-7
    [9] TANG I N, MUNKELWITZ H R. Aerosol phase transFormation and growth in the atmosphere[J]. Journal of Applied Meteorology and Climatology, 1994, 33(7): 791-796. doi: 10.1175/1520-0450(1994)033<0791:APTAGI>2.0.CO;2
    [10] TANG I N, MUNKELWITZ H R. Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols[J]. Atmospheric Environment Part A General Topics, 1993, 27(4): 467-473. doi: 10.1016/0960-1686(93)90204-C
    [11] LU J J, Zhang T Q, YU M R, et al. Study on aerosol removal by a passive containment cooling system[C]//27th International Conference on Nuclear Engineering. Tukuba: The Japan Society of Mechanical Engineers, 2019.
    [12] U. S. Nuclear Regulatory Commission. Technical bases for estimating fission product behavior during LWR Accidents: NUREG-0772[R]. Washington, DC: Nuclear Regulatory Commission, 1981.
    [13] 林诚格. 非能动安全先进压水堆核电技术(中册)[M]. 北京: 原子能出版社, 2010: 483.
    [14] 付亚茹,耿珺,孙大威,等. AP1000核电厂安全壳内气溶胶自然去除分析[J]. 原子能科学技术,2017, 51(4): 700-705. doi: 10.7538/yzk.2017.51.04.0700
    [15] HAYNES W M. CRC handbook of chemistry and physics[M]. 96th ed. New York: CRC Press, 2015: 57.
    [16] MISHRA G, MANDARIYA A K, TRIPATHI S N, et al. Hygroscopic growth of CsI and CsOH particles in context of nuclear reactor accident research[J]. Journal of Aerosol Science, 2019(132): 60-69. doi: 10.1016/j.jaerosci.2019.03.008
    [17] 孙雪霆,陈林林,魏严凇,等. 非能动安全壳冷却对严重事故下气溶胶沉积影响分析[J]. 原子能科学技术,2016, 50(12): 2219-2223. doi: 10.7538/yzk.2016.50.12.2219
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  351
  • HTML全文浏览量:  103
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-18
  • 修回日期:  2021-03-10
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回