Calculation of Internal Stress in Oxide Films of Zirconium Alloy
-
摘要: 锆合金氧化膜中的内应力是锆合金腐蚀动力学中的重要影响因素,目前没有统一的方法得到氧化膜中内应力的大小,且数值差异较大。在传统的实验和理论方法的基础上,建立ZrO2/Zr合金双层氧化弯曲几何模型,计算不同腐蚀状态下氧化膜中的内应力大小,得到内应力变化规律并分析其影响因素,为锆合金氧化膜内应力研究提供了一种较为可靠的方法。Abstract: The internal stress in the oxide film of zirconium alloy is an important factor in the corrosion kinetics of zirconium alloy. At present, there is no unified method to obtain the internal stress in the oxide film, and the data is quite different. Based on the traditional experimental and theoretical methods, the double layer oxidation bending model of ZrO2/Zr is established, the internal stress in the oxide film under different corrosion conditions is calculated, the change rule of the internal stress is obtained and the influencing factors is analyzed, which provides a more reliable way for the research of the internal stress in the oxide film of zirconium alloy.
-
Key words:
- Oxide film /
- Internal stress /
- Deflection
-
表 1 锆合金的类型、腐蚀条件及氧化膜厚度
Table 1. Types, Corrosion Conditions and Film Thicknessof Zircaloy
锆合金类型 腐蚀条件 腐蚀厚度/μm Zr-Sn-Nb合金 400℃/10.3 MPa蒸汽 3.6 Zr-4 360℃/18.6 MPa锂水 5 改进型N18 360℃/18.6 MPa锂水 8 Zr-Sn-Nb合金 400℃/10.3 MPa蒸汽 14 N18 500℃/10.3 MPa蒸汽 18 改进型N18 360℃/18.6 MPa锂水 46 改进型N18 360℃/18.6 MPa锂水 77 表 2 氧化膜样品线切割后的各参数及对应的内应力值
Table 2. Parameters and Corresponding Internal Stress Dates of Samples
膜厚度/
μm最高点/
mm切割厚度/
mm挠度/
mm长度/
mm氧化膜
弯曲曲率应力/
GPa3.6 0.638 0.596 0.042 15.22 1.451 2.363 0.673 0.636 0.037 15.2 1.281 2.369 5 0.807 0.77 0.037 19.7 0.7627 1.497 0.81 0.774 0.036 19.7 0.742 1.47 8 0.612 0.487 0.125 20.4 2.403 1.259 0.608 0.462 0.146 20.4 2.807 1.331 14 0.592 0.486 0.106 19.9 2.141 0.69 0.58 0.456 0.124 20.2 2.431 0.697 18 0.617 0.46 0.157 21.1 3.109 0.742 0.613 0.464 0.149 20.08 2.957 0.716 46 0.821 0.758 0.063 20.01 1.259 0.36 0.801 0.736 0.065 20.03 1.296 0.35 77 0.75 0.686 0.064 20 1.28 0.23 0.758 0.697 0.061 19.98 1.222 0.224 -
[1] GARZAROLLI F, SEIDEL H, TRICOT R, et al. Zirconium in the nuclear industry[C]//Proceedings of the 9th International Symposium. Baltimore: ASTM International, 1991: 395-415. [2] BEIE H J, MITWALSKY A, GARZAROLLI F, et al. Examinations of the corrosion mechanism of zirconium alloys[C]//Proceedings of the Zirconium in the Nuclear Industry: Tenth International Symposium. New York: ASTM, 1994: 615-643. [3] GODLEWSKI J, BOUVIER P, LUCAZEAU G, et al. Stress distribution measured by Raman spectroscopy in zirconia films formed by oxidation of Zr-based alloys[C]//Proceedings of the Zirconium in the Nuclear Industry: Twelfth International Symposium. New York: ASTM, 2000: 877-900. [4] 杨忠波. Zr-XSn-YNb-0.3Fe合金显微组织与腐蚀行为研究[D]. 成都: 中国核动力研究设计院, 2016. [5] STONEY G G. The Tension of metallic films deposited by electrolysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1909, 82(553): 172-175. [6] 李美栓,李铁藩. 氧化膜应力与原位测量[J]. 材料保护,1993, 26(8): 4-7. [7] PLATT P, POLATIDIS E, FRANKEL P, et al. A study into stress relaxation in oxides formed on zirconium alloys[J]. Journal of Nuclear Materials, 2015(456): 415-425. doi: 10.1016/j.jnucmat.2014.09.072 [8] VERMAAK N, PARRY G, ESTEVEZ R, et al. New insight into crack formation during corrosion of zirconium-based metal-oxide systems[J]. Acta Materialia, 2013, 61(12): 4374-4383. doi: 10.1016/j.actamat.2013.04.009 [9] 汤琪,王华才,附程,等. 秦山一期核电厂乏燃料棒包壳外表面氧化膜内应力研究[J]. 核动力工程,2017, 38(S1): 105-109. [10] PARISE M, SICARDY O, CAILLETAUD G. Modelling of the mechanical behavior of the metal-oxide system during Zr alloy oxidation[J]. Journal of Nuclear Materials, 1998, 256(1): 35-46. doi: 10.1016/S0022-3115(98)00045-2