高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泡沫不锈钢层TRISO颗粒的堆内行为模拟

尹春雨 刘仕超 焦拥军 周毅 高士鑫 邢硕 青涛 汪丽达 闫新龙

尹春雨, 刘仕超, 焦拥军, 周毅, 高士鑫, 邢硕, 青涛, 汪丽达, 闫新龙. 泡沫不锈钢层TRISO颗粒的堆内行为模拟[J]. 核动力工程, 2021, 42(4): 133-137. doi: 10.13832/j.jnpe.2021.04.0133
引用本文: 尹春雨, 刘仕超, 焦拥军, 周毅, 高士鑫, 邢硕, 青涛, 汪丽达, 闫新龙. 泡沫不锈钢层TRISO颗粒的堆内行为模拟[J]. 核动力工程, 2021, 42(4): 133-137. doi: 10.13832/j.jnpe.2021.04.0133
Yin Chunyu, Liu Shichao, Jiao Yongjun, Zhou Yi, Gao Shixin, Xing Shuo, Qing Tao, Wang Lida, Yan Xinlong. In-Pile Performance of TRISO Particle Used Stainless Steel Foams as Buffer Layer[J]. Nuclear Power Engineering, 2021, 42(4): 133-137. doi: 10.13832/j.jnpe.2021.04.0133
Citation: Yin Chunyu, Liu Shichao, Jiao Yongjun, Zhou Yi, Gao Shixin, Xing Shuo, Qing Tao, Wang Lida, Yan Xinlong. In-Pile Performance of TRISO Particle Used Stainless Steel Foams as Buffer Layer[J]. Nuclear Power Engineering, 2021, 42(4): 133-137. doi: 10.13832/j.jnpe.2021.04.0133

泡沫不锈钢层TRISO颗粒的堆内行为模拟

doi: 10.13832/j.jnpe.2021.04.0133
基金项目: 国家自然科学基金项目(12005213)
详细信息
    作者简介:

    尹春雨(1982—),男,高级工程师,主要从事燃料元件及其相关组件设计和研究工作,E-mail: yincy909@163.com

  • 中图分类号: TL334

In-Pile Performance of TRISO Particle Used Stainless Steel Foams as Buffer Layer

  • 摘要: 三向同性燃料(TRISO)颗粒中疏松热解碳层堆内辐照收缩产生间隙后,会导致TRISO颗粒热导恶化。为解决该问题,本文采用泡沫不锈钢替代TRISO颗粒中的疏松热解碳层。对泡沫不锈钢TRISO颗粒的堆内行为模拟结果表明,采用泡沫不锈钢可以避免疏松层堆内密实化,提高疏松层的传热效率,有效降低核芯运行温度;不论采用泡沫不锈钢还是疏松热解碳作为疏松层,内层致密热解碳层(IPyC层)和外层致密热解碳层(OPyC层)的应力均会超过包覆层强度;碳化硅(SiC)层的环向应力随泡沫不锈钢层弹性模量的减小而减小,通过降低泡沫不锈钢弹性模量可以有效控制SiC层应力,保证其结构完整性。因此,应选取气孔率高、弹性模量低的泡沫不锈钢作为TRISO颗粒的疏松层,可在改善热导恶化问题的同时保证SiC层的结构完整性。该研究为TRISO颗粒在工程应用中的优化设计提供了指导。

     

  • 图  1  TRISO颗粒的计算模型

    Figure  1.  Computational Model of TRISO Particles

    图  2  寿期初TRISO颗粒径向温度分布状态

    Figure  2.  Radial Temperature Distribution of TRISO Particles at the Beginning of Life Period

    图  3  疏松热解碳-IPyC层、泡沫不锈钢-IPyC层尺寸变化

    Figure  3.  Size Changes between IPyC and Metal Foam-IPyC Layer    

    图  4  SiC层的应力状态随中子注量的变化曲线

    Figure  4.  Curves of Stress State of SiC Layer with Neutron Fluence     

    图  5  不同中子注量下IPyC层应力状态

    Figure  5.  Stress State of IPyC under Different Neutron Fluence

    图  6  不同中子注量下OPyC层应力状态

    Figure  6.  Stress State of OPyC under Different Neutron Fluence   

  • [1] MILLER G. Statistical approach and benchmarking for modeling of multi-dimensional behavior in TRISO-coated fuel particles[J]. Journal of Nuclear Materials, 2003, 317(01): 69-78. doi: 10.1016/S0022-3115(2)01702-6
    [2] SEN R S, POPE M A, OUGOUAG A M. Assessment of possible cycle lengths for fully encapsulated microstructure fueled light water reactor concepts[J]. Nuclear Engineering and Design, 2013, 255(1): 310-320.
    [3] SCHAPPEL D, TERRANI K, POWERS J, et al. Thermo mechanical analysis of fully ceramic microencapsulated fuel during in-pile operation[C]. United States: Top Fuel 2016, 2016.
    [4] HALES J D, WILLIAMSON R L. Multidimensional multiphysics simulation of TRISO particle fuel[J]. Journal of Nuclear Materials, 2013, 443(1): 531-543.
    [5] 辛勇,李垣明,唐昌兵,等. 金属基弥散微封装燃料中TRISO燃料颗粒的尺寸优化设计[J]. 核动力工程,2019, 40(2): 176-179.
    [6] LIU R Z, LIU M L, CHANG J X, et al. An improved design of TRISO particle with porous SiC inner layer by fluidized bed-chemical vapor deposition[J]. Journal of Nuclear Materials, 2015, 467(1): 917-926.
    [7] BESMANN T M, FERBER M K, LIN H T, et al. Fission product release and survivability of UN-kernel LWR TRISO fuel[J]. Journal of Nuclear Materials, 2014, 448(1): 412-419.
    [8] NOOR F M, ROSIP N M, JAMALUDIN K R, et al. Effect of sintering temperature on the properties of stainless steel foam[J]. Advanced Materials Research, 2015, 1807(1): 232-235.
  • 加载中
图(6)
计量
  • 文章访问数:  1416
  • HTML全文浏览量:  193
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-13
  • 修回日期:  2020-12-09
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回