高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SPAR-H方法中行为形成因子间的相关性识别

刘建桥 张力 邹衍华 孙倩琳 刘雪阳 陈帅

刘建桥, 张力, 邹衍华, 孙倩琳, 刘雪阳, 陈帅. SPAR-H方法中行为形成因子间的相关性识别[J]. 核动力工程, 2021, 42(4): 144-150. doi: 10.13832/j.jnpe.2021.04.0144
引用本文: 刘建桥, 张力, 邹衍华, 孙倩琳, 刘雪阳, 陈帅. SPAR-H方法中行为形成因子间的相关性识别[J]. 核动力工程, 2021, 42(4): 144-150. doi: 10.13832/j.jnpe.2021.04.0144
Liu Jianqiao, Zhang Li, Zou Yanhua, Sun Qianlin, Liu Xueyang, Chen Shuai. Identification of Correlation among Performance Shaping Factors of SPAR-H Method[J]. Nuclear Power Engineering, 2021, 42(4): 144-150. doi: 10.13832/j.jnpe.2021.04.0144
Citation: Liu Jianqiao, Zhang Li, Zou Yanhua, Sun Qianlin, Liu Xueyang, Chen Shuai. Identification of Correlation among Performance Shaping Factors of SPAR-H Method[J]. Nuclear Power Engineering, 2021, 42(4): 144-150. doi: 10.13832/j.jnpe.2021.04.0144

SPAR-H方法中行为形成因子间的相关性识别

doi: 10.13832/j.jnpe.2021.04.0144
基金项目: 国家自然科学基金(71771084,71501068);大型复杂人机系统人误预警技术湖南省工程实验室资助(湘发改高技[2015]1084号);湖南省教育厅科研项目(18A424);湖南省自然科学基金(2020JJ4016);湖南省级应用特色学科安全与科学工程开放基金(KFB20017);湖南省研究生科研创新项目(CX20200908)
详细信息
    作者简介:

    刘建桥(1992—),男,博士研究生,现从事人因可靠性方面的研究工作,E-mail: 1076218029@qq.com

    通讯作者:

    张 力,E-mail: 13807340602@139.com

  • 中图分类号: TL364

Identification of Correlation among Performance Shaping Factors of SPAR-H Method

  • 摘要: 标准化核电厂风险分析-人因可靠性分析方法(SPAR-H)是目前国际上认可和接受的人因可靠性分析方法,但其8个行为形成因子(PSFs)间存在交叉部分,导致人因失误概率重复计算或高估。为了改进SPAR-H的PSFs体系,通过统计2007年到2017年219份国内核电厂运行事件报告,筛选出与主控室操纵员运行有关的89份人因事件/事故报告进行PSFs相关性的研究,运用数据挖掘技术(关联规则分析、探索性因子分析、皮尔森相关性分析)对统计结果进行分析。结果表明:①复杂度、压力、职责适宜以及可用时间4个PSFs之间存在相关性。其中,复杂度分别与压力和职责适宜相关,职责适宜与压力、压力与可用时间相关;②工作过程、规程、人因工程/人机界面和经验/培训之间存在关联。在涉及经验/培训、人因工程/人机界面和规程的事件中,很大概率还涉及到工作过程。这些结论可以给改进SPAR-H的PSFs体系提供参考,为定量研究PSFs间的因果关系建立基础。

     

  • 图  1  研究过程

    Figure  1.  General Process of Research Approach

    图  2  SPAR-H方法中PSFs出现在报告中的百分比

    Figure  2.  Percentage of Contributions to Events by PSFs of SPAR-H

    图  3  8个PSFs的关联图

    Figure  3.  Association Diagram of Eight PSFs

    表  1  关联规则建模结果

    Table  1.   Results of Association Rule Modeler

    后项前项规则
    标识
    支持度/
    %
    置信度/
    %
    提升度
    工作过程  经验/培训 1 46.067 80.488 1.405
     人因工程/人机界面、
    经验/培训
    2 8.989 87.5 1.527
     规程、经验/培训 3 11.236 70.0 1.222
    下载: 导出CSV

    表  2  8个PSFs探索性因子分析的结果

    Table  2.   Results of Exploratory Factor Analysis of Eight PSFs     

    PSFs因子1因子2
    复杂度0.762
    规程−0.693
    人因工程/人机界面−0.714
    经验/培训0.526
    可用时间0.608
    压力0.839
    工作过程0.690
    职责适宜0.720
    特征值2.5511.882
    下载: 导出CSV

    表  3  8个PSFs的皮尔森相关分析结果

    Table  3.   Results of Pearson Correlation Analysis of Eight PSFs

    PSFs复杂度规程人因工程/人机界面经验/培训可用时间压力工作过程职责适宜
    复杂度1
    规程−0.2041
    人因工程/人机界面−0.2470.3121
    经验/培训−0.167−0.162−0.1761
    可用时间0.2320.081−0.136−0.2001
    压力0.681−0.091−0.168−0.1590.3741
    工作过程−0.191−0.321−0.3200.433−0.251−0.1301
    职责适宜0.3840.056−0.095−0.1400.3330.564−0.1761
      注:①—在0.05级别(双尾),相关性显著;②—在0.01级别(双尾),相关性显著;"—"—无内容
    下载: 导出CSV
  • [1] PARK J, JUNG W, KIM J. Inter-relationships between performance shaping factors for human reliability analysis of nuclear power plants[J]. Nuclear Engineering and Technology, 2020, 52(1): 87-100. doi: 10.1016/j.net.2019.07.004
    [2] KANG S, SEONG P H. Performance shaping factor taxonomy for human reliability analysis on mitigating nuclear power plant accidents caused by extreme external hazards[J]. Annals of Nuclear Energy, 2020(145): 107533. doi: 10.1016/j.anucene.2020.107533
    [3] GROTH K M, MOSLEH A. A data-informed PIF hierarchy for model-based human reliability analysis[J]. Reliability Engineering & System Safety, 2012(108): 154-174.
    [4] FORESTER J, DANG V N, BYE A, et al. The international HRA empirical study: lessons learned from comparing HRA methods predictions to HAMMLAB simulator data: NUREG-2127[R]. Washington, DC: U.S. Nuclear Regulatory Commission, 2014.
    [5] LIU P, LYU X, QIU Y P, et al. Identifying key performance shaping factors in digital main control rooms of nuclear power plants: a risk-based approach[J]. Reliability Engineering & System Safety, 2017(167): 264-275.
    [6] FORESTER J, LIAO H F, DANG V N, et al. The U.S. HRA empirical study-assessment of HRA method predictions against operating crew performance on a U.S. nuclear power plant simulator: NUREG-2156[R]. Washington, DC: U.S. Nuclear Regulatory Commission, 2016.
    [7] GERTMAN D I, BLACKMAN H S, MARBLE J L, et al. The SPAR-H human reliability analysis method: NUREG/CR-6883[R]. Washington, DC: U.S. Nuclear Regulatory Commission, 2005.
    [8] GROTH K M, SWILER L P. Bridging the gap between HRA research and HRA practice: a Bayesian network version of SPAR-H[J]. Reliability Engineering & System Safety, 2013(115): 33-42.
    [9] 何旭洪, 黄祥瑞. 工业系统中人的可靠性分析: 原理、方法与应用[M]. 北京: 清华大学出版社, 2007: 159-164.
    [10] 张力,邹衍华,黄卫刚. 核电站运行事件人误因素交互作用分析[J]. 核动力工程,2010, 31(6): 41-46.
    [11] 王国平, 郭伟宸, 汪若君. IBM SPSS Modeler数据与文本挖掘实战[M]. 北京: 清华大学出版社, 2014: 182-193.
    [12] DOELL C, HELD P, MOURA R, et al. Analysis of a major-accident dataset by Association Rule Mining to minimise unsafe interfaces[C]//Proceedings of the 13th International Probabilistic Workshop. Liverpool, UK: Research Publishing, 2015.
    [13] ZOU Y H, XIAO Z, ZHANG L, et al. A data mining framework within the Chinese NPPs operating experience feedback system for identifying intrinsic correlations among human factors[J]. Annals of Nuclear Energy, 2018(116): 163-170. doi: 10.1016/j.anucene.2018.02.038
    [14] 薛薇. SPSS统计分析方法及应用[M]. 北京: 电子工业出版社, 2004: 327-338.
    [15] 郭志刚. 社会统计分析方法: SPSS软件应用[M]. 北京: 中国人民大学出版社, 1999: 87-114.
    [16] 吴明隆. 问卷统计分析实务[M]. 重庆: 重庆大学出版社, 2010: 476-477.
    [17] CRAMÉR H. Mathematical methods of statistics (PMS-9)[M]. Princeton: Princeton University Press, 1946: 500.
    [18] GUILFORD J P. Psychometric methods[J]. Journal of the American Statistical Association, 1956(51): 413-414. doi: 10.2307/2281384
    [19] CHANG Y H J, MOSLEH A. Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents. Part 2: IDAC performance influencing factors model[J]. Reliability Engineering & System Safety, 2007, 92(8): 1014-1040.
    [20] GROTH K M. A data-informed model of performance shaping factors for use in human reliability analysis[D]. Washington Metropolitan: University of Maryland, College Park, 2009.
    [21] HOLLNAGEL E. Cognitive reliability and error analysis method (CREAM)[M]. Amsterdam: Elsevier, 1998: 107-117
    [22] MOHAGHEGH-AHMADABADI Z. On the theoretical foundations and principles of organizational safety risk analysis[D]. Washington Metropolitan: University of Maryland, College Park, 2007.
    [23] ANGELOPOULOU A, MYKONIATIS K, BOYAPATI N R. Industry 4.0: the use of simulation for human reliability assessment[J]. Procedia Manufacturing, 2020(42): 296-301. doi: 10.1016/j.promfg.2020.02.094
    [24] LAUMANN K, RASMUSSEN M. Suggested improvements to the definitions of Standardized Plant Analysis of Risk-Human Reliability Analysis (SPAR-H) performance shaping factors, their levels and multipliers and the nominal tasks[J]. Reliability Engineering & System Safety, 2016(145): 287-300.
    [25] WANG W, DI MAIO F, ZIO E. Considering the human operator cognitive process for the interpretation of diagnostic outcomes related to component failures and cyber security attacks[J]. Reliability Engineering & System Safety, 2020(202): 107007.
    [26] FORESTER J, KOLACZKOWSKI A, LOIS E, et al. Evaluation of human reliability analysis methods against good practices: NUREG-1842[R]. Washington, DC: U.S. Nuclear Regulatory Commission, 2006.
    [27] WHALEY A M, KELLY D L, BORING R L, et al. SPAR-H step-by-step guidance: INL/CON-12-24693[R]. Washington, DC: Idaho National Laboratory, 2012
    [28] 张力,刘建桥,邹衍华,等. 核电厂数字化主控室操纵员界面管理任务特征的研究[J]. 核动力工程,2019, 40(4): 91-95.
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  528
  • HTML全文浏览量:  190
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-18
  • 修回日期:  2020-08-03
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回