高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于近场LED点光源光度立体的核电设备表面缺陷三维检测

黄三傲 李明 徐科 师英杰

黄三傲, 李明, 徐科, 师英杰. 基于近场LED点光源光度立体的核电设备表面缺陷三维检测[J]. 核动力工程, 2021, 42(4): 191-197. doi: 10.13832/j.jnpe.2021.04.0191
引用本文: 黄三傲, 李明, 徐科, 师英杰. 基于近场LED点光源光度立体的核电设备表面缺陷三维检测[J]. 核动力工程, 2021, 42(4): 191-197. doi: 10.13832/j.jnpe.2021.04.0191
Huang Sanao, Li Ming, Xu Ke, Shi Yingjie. Surface Defect Detection on Nuclear Power Plant Components Based on Photometric Stereo under Near-Field LED Light[J]. Nuclear Power Engineering, 2021, 42(4): 191-197. doi: 10.13832/j.jnpe.2021.04.0191
Citation: Huang Sanao, Li Ming, Xu Ke, Shi Yingjie. Surface Defect Detection on Nuclear Power Plant Components Based on Photometric Stereo under Near-Field LED Light[J]. Nuclear Power Engineering, 2021, 42(4): 191-197. doi: 10.13832/j.jnpe.2021.04.0191

基于近场LED点光源光度立体的核电设备表面缺陷三维检测

doi: 10.13832/j.jnpe.2021.04.0191
基金项目: 国家自然科学基金项目(51674031, 51874022);国家重点研发计划(2018YFB0704304)
详细信息
    作者简介:

    黄三傲(1982—),男,博士研究生,高级工程师,现主要从事先进无损检测方法的研究,E-mail: sanaohuang@sina.com

  • 中图分类号: TP391.4; TL48

Surface Defect Detection on Nuclear Power Plant Components Based on Photometric Stereo under Near-Field LED Light

  • 摘要: 为提高核电设备表面缺陷检测能力,研究了近场发光二极管(LED)点光源照明条件下的光度立体三维检测方法。该方法采用迭代算法,确定光源发光特性参数,进而实现精确的光照强度估计,并结合光源与被检表面点空间位置的计算方法,实现近场LED点光源照明下被检测面上不同点的光照强度与光线方向的估计。以此为基础设计表面缺陷三维检测系统,并将该系统在表面损伤试样以及实际核电设备上进行实验验证。结果表明,该系统可以获取表面缺陷三维信息,并且对于划伤类缺陷,能够实现比较精确的深度测量。因此,该系统可以有效提高表面缺陷的检测能力。

     

  • 图  1  近场光度立体相机光源布置示意图

    OcXcYcZc—相机坐标系;OXwYwZw—世界坐标系;L1L2L3—表面某一点对应的其中3个光源的光线方向

    Figure  1.  Diagram of Photometric Stereo System

    图  2  表面损伤试样

    编号1、2、3—深度为1、2、3 mm的3条划伤;编号4、5—不同直径与深度的2个压痕

    Figure  2.  Specimen of Surface Damage

    图  3  1号划伤法向量图与三维重建结果

    x—沿缺陷方向的长度;y—垂直缺陷方向的宽度;z—垂直缺陷平面的深度;1 pixel=0.077 mm

    Figure  3.  Normal and 3D Reconstruction Result of Defect No. 1

    图  4  2号划伤法向量图与三维重建结果

    Figure  4.  Normal and 3D Reconstruction Result of Defect No. 2

    图  5  3号划伤法向量图与三维重建结果

    Figure  5.  Normal and 3D Reconstruction Result of Defect No. 3

    图  6  4号压痕法向量图与三维重建结果

    Figure  6.  Normal and 3D Reconstruction Result of Defect No. 4

    图  7  5号压痕法向量图与三维重建结果

    Figure  7.  Normal and 3D Reconstruction Result of Defect No. 5

    图  8  压力容器管嘴安全端加工件表面缺陷

    ①、②、③、④—缺陷编号

    Figure  8.  Surface Defects of Machined Parts of Safety End of Pressure Vessel Nozzle

    图  9  安全端加工件表面缺陷三维形貌重建

    Figure  9.  3D Reconstruction Results of Surface Defects of Machined Parts of Safety End     

    表  1  划伤定量测量 单位:mm

    Table  1.   Size of Scratches

    样本编号深度测量宽度测量深度误差宽度误差
    11.271.260.270.26
    21.862.05−0.140.05
    32.863.12−0.140.12
    下载: 导出CSV
  • [1] KANG D Y, JANG Y J, WON S C. Development of an inspection system for planar steel surface using multispectral photometric stereo[J]. Opt. Eng., 2013(52): 039701-039701. doi: 10.1117/1.OE.52.3.039701
    [2] 徐科,周鹏,杨朝霖. 基于光度立体学的金属板带表面微小缺陷在线检测方法[J]. 机械工程学报,2013, 49(4): 25-29.
    [3] EVA W, SEBASTIAN Z, MATTHIAS S, et al. Photometric stereo sensor for robot-assisted industrial quality inspection of coated composite material surfaces[C]. In Proceedings of the SPIE 12th International Conference on Quality Control by Artificial Vision, Le Creusot, France, 2015.
    [4] 王磊,徐科,周鹏,等. 利用多尺度小波变换的光度立体快速三维表面重建算法[J]. 计算机辅助设计与图形学学报,2017, 29(1): 124-129. doi: 10.3969/j.issn.1003-9775.2017.01.015
    [5] WOODHAM R J. Photometric method for determining surface orientation from multiple images[J]. Optical Engineering, 1980, 19(1): 1-22.
    [6] XIE L M, SONG Z H, JIAO G H, et al. A Practical means for calibrating an LED-based photometric stereo system[J]. Opt. Lasers Eng., 2015(64): 42-50.
    [7] FAN H, QI L, WANG N, et al. Deviation correction method for close-range photometric stereo with nonuniform illumination[J]. Optical Engineering, 2017, 56(10): 103102.
    [8] 谢利民. 基于近场照明的光度立体视觉算法研究[D]. 武汉: 华中科技大学, 2015.
    [9] HUANG S A, XU K, LI M, et al. Improved visual inspection through 3D image reconstruction of defects based on the photometric stereo technique[J]. Sensors., 2019, 19(22): 4970. doi: 10.3390/s19224970
    [10] QUEAU Y, DURIX B, WU T, et al. LED-based photometric stereo: modeling, calibration and numerical solution[J]. Math. Imaging Vis., 2018(60): 1-26.
    [11] LOGOTHETIS F, MECCA R, CIPOLLA R. Semi-calibrated near field photometric stereo[C]. In Proceedings of the CVPR 2017, Honolulu, HI, USA, 2017.
    [12] QUEAU Y, WU T, CREMERS D. Semi-calibrated near-light photometric stereo[C]. In Proceedings of the SSVM 2017, Kolding, Denmark, 2017.
    [13] HAN T Q, SHEN H L. Photometric stereo for general BRDFs via reflection sparsity modeling[J]. IEEE Trans. Image Process., 2015(24): 4888-4903.
    [14] 李敏. 基于非朗伯光度立体的三维重建研究[D]. 杭州: 浙江大学, 2020.
    [15] SARACCHINI R F V, STOLFI J, LEITAO H C G, et al. A robust multi-scale integration method to obtain the depth from gradient maps[J]. Computer Vision and Image Under-standing, 2012, 116(8): 882-895. doi: 10.1016/j.cviu.2012.03.006
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  619
  • HTML全文浏览量:  253
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-26
  • 修回日期:  2021-04-01
  • 网络出版日期:  2021-08-11
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回