高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于LSTM的核电传感器多特征融合多步状态预测

张思原 卢忝余 曾辉 徐春 张倬 黄擎宇 张尧毅 王媛美

张思原, 卢忝余, 曾辉, 徐春, 张倬, 黄擎宇, 张尧毅, 王媛美. 基于LSTM的核电传感器多特征融合多步状态预测[J]. 核动力工程, 2021, 42(4): 208-213. doi: 10.13832/j.jnpe.2021.04.0208
引用本文: 张思原, 卢忝余, 曾辉, 徐春, 张倬, 黄擎宇, 张尧毅, 王媛美. 基于LSTM的核电传感器多特征融合多步状态预测[J]. 核动力工程, 2021, 42(4): 208-213. doi: 10.13832/j.jnpe.2021.04.0208
Zhang Siyuan, Lu Tianyu, Zeng Hui, Xu Chun, Zhang Zhuo, Huang Qingyu, Zhang Yaoyi, Wang Yuanmei. Multi-Feature Fusion Multi-Step State Prediction of Nuclear Power Sensor Based on LSTM[J]. Nuclear Power Engineering, 2021, 42(4): 208-213. doi: 10.13832/j.jnpe.2021.04.0208
Citation: Zhang Siyuan, Lu Tianyu, Zeng Hui, Xu Chun, Zhang Zhuo, Huang Qingyu, Zhang Yaoyi, Wang Yuanmei. Multi-Feature Fusion Multi-Step State Prediction of Nuclear Power Sensor Based on LSTM[J]. Nuclear Power Engineering, 2021, 42(4): 208-213. doi: 10.13832/j.jnpe.2021.04.0208

基于LSTM的核电传感器多特征融合多步状态预测

doi: 10.13832/j.jnpe.2021.04.0208
详细信息
    作者简介:

    张思原(1992—),女,工程师,现主要从事反应堆系统软件研发方面工作,E-mail: siyuan_Tooru@163.com

  • 中图分类号: TL363

Multi-Feature Fusion Multi-Step State Prediction of Nuclear Power Sensor Based on LSTM

  • 摘要: 针对核电工况参数预测的问题,利用核电站传感检测系统采集的大量时间序列,提出了基于长短时记忆网络(LSTM)的多特征融合多步状态预测模型。以某核电厂实时参数系统采集到的SG1蒸汽压力传感数据为研究对象,首先针对数据缺失、采样时标不一致问题进行数据预处理,然后完成基于LSTM的多特征融合多步状态预测模型的结构设计与建模,最后将本文提出的预测模型与循环神经网络(RNN)、门控循环单元(GRU)、本文模型-全连接层1以及单变量LSTM等多步预测模型进行比较。实验结果表明,本文提出的预测模型的拟合性能和预测性能整体最优,同时也验证了基于LSTM模型的深度学习方法在核电站运行安全保障领域的适用性。

     

  • 图  1  基于LSTM的多特征融合多步状态预测模型示意图   

    S1—全连接层1的激活函数输出向量;S2—全连接层2的激活函数输出向量,A—LSTM层的输出向量

    Figure  1.  Schematic Diagram of Multi-Feature Fusion Multi-Step State Prediction Model Based on LSTM

    图  2  本文模型测试集预测结果

    Figure  2.  Prediction Results of Model Test Set in this Paper

    图  3  本文模型预测效果图(40个采样点)

    Figure  3.  Model Prediction Effect Chart of this Paper (40 Sampling Points)

    表  1  SG1蒸汽压力关联特征

    Table  1.   SG1 Steam Pressure Sensor Related Features

    测点序号参数名称测点序号参数名称
    1SG1蒸汽压力10上充流量
    2SG1蒸汽压力11SG2给水流量
    3SG1蒸汽压力12SG3给水流量
    4SG1给水流量13SG2蒸汽压力
    5SG1蒸汽流量14SG3蒸汽压力
    6SG1窄量程水位15SG2蒸汽流量
    7SG1宽量程水位16SG3蒸汽流量
    8最大平均温度172环路流量
    91环路流量183环路流量
    下载: 导出CSV

    表  2  数据集统计结果

    Table  2.   Data Set Statistics

    测点序号参数2018年1月总测量数缺失统计数量
    1SG1蒸汽压力6767312632
    2SG1蒸汽压力1071559206
    3SG1蒸汽压力956924561
    4SG1给水流量46965730
    5SG1蒸汽流量11757250
    6SG1窄量程水位33350240
    7SG1宽量程水位24010340
    8最大平均温度4274564171
    91环路流量42330160
    10上充流量5525105903
    11SG2给水流量46204420
    12SG3给水流量45579530
    13SG2蒸汽压力887091835
    14SG3蒸汽压力4258897954
    15SG2蒸汽流量10500030
    16SG3蒸汽流量85957319
    172环路流量43246770
    183环路流量42424780
    下载: 导出CSV

    表  3  重要超参数设置

    Table  3.   Important Hyperparameter Settings

    参数名参数描述设置值
    batch_size批处理大小256
    learning_rate学习率0.001
    epoch迭代次数50
    s1_num特征融合层神经元
    个数
    16
    lstm_numlstm层隐藏单元个数128
    s2_num输出变换层隐藏单元个数取值与k相同(k=10)
    m输入数据的时间步数25
    下载: 导出CSV

    表  4  不同模型预测结果比较

    Table  4.   Comparison of Prediction Results of Different Models

    模型SG1蒸汽压力RMSE×102
    t+1t+2t+3t+4t+5t+6t+7t+8t+9t+10平均值
    本文模型0.361010.360680.368510.374830.381610.397940.395870.396340.400580.410570.38479
    RNN0.357000.366270.374350.375490.376850.388000.401190.405950.411550.411720.38684
    GRU0.371240.374570.381140.382880.384050.402770.414280.409110.404750.414210.39390
    本文模型-全连接层10.394490.403960.405440.390900.396580.425820.438740.423430.418430.428900.41267
    单变量LSTM0.400540.405750.406460.405900.410010.425890.429170.432730.430230.443180.41899
      t+1—从任意时刻t开始后的第1×30 s时刻;其余类同
    下载: 导出CSV
  • [1] BOX G E P, JENKINS G M, REINSEL G C, et al. Time series analysis: forecasting and control, 5th edition[J]. Journal of the Operational Research Society, 2015, 22(2): 199-201.
    [2] TONG W M, LI Y J, SHANY Z. Data mining of time series based on wavelet analysis[J]. Computer Engineering, 2008, 34(1): 26-29.
    [3] 潘迪夫,刘辉,李燕飞. 基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J]. 电网技术,2008, 32(7): 82-86.
    [4] NOTTINGHAM Q J, COOK D F. Local linear regression for estimating time series data[J]. Computational Statistics & Data Analysis, 2001, 37(2): 209-217.
    [5] SAPANKEVYCH N I, SANKAR R. Time series prediction using support vector machines[J]. IEEE Computational Intelligence Magazine, 2009, 4(2): 24-38. doi: 10.1109/MCI.2009.932254
    [6] LIN K, LIN Q, ZHOU C, et al. Time series prediction based on linear regression and SVR[C]//Third International Conference on Natural Computation (ICNC 2007). Haikou: IEEE Computer Society, 2007: 688-691.
    [7] HU T S, LAM K C, NG S T. River flow time series prediction with a range-dependent neural network[J]. International Association of Scientific Hydrology Bulletin, 2001, 46(5): 729-745. doi: 10.1080/02626660109492867
    [8] ZHANG G P. A neural network ensemble method with jittered training data for time series forecasting[J]. Information Sciences, 2007, 177(23): 5329-5346. doi: 10.1016/j.ins.2007.06.015
    [9] 杨祎玥,伏潜,万定生. 基于深度循环神经网络的时间序列预测模型[J]. 计算机技术与发展,2017(3): 35-38, 43.
    [10] PARK D C. Prediction of time series data using multiresolution-based bilinear recurrent neural network[C]//International Conference on Electronic Computer Technology. Macau: IEEE Computer Society, 2009.
    [11] JIE W, JUN W, WEN F, et al. Financial time series prediction using elman recurrent random neural networks[J]. Computational Intelligence and Neuroscience, 2016(2016): 1-14.
    [12] NGAI E, DRESSLER F, LEUNG V, et al. Guest editorial special section on internet-of-things for smart cities and urban informatics[J]. IEEE Transactions on Industrial Informatics, 2017, 13(2): 748-750. doi: 10.1109/TII.2017.2675379
    [13] 龚安, 马光明, 郭文婷, 等. 基于LSTM循环神经网络的核电设备状态预测[J]. 计算机技术与发展,2019(10): 41-45. doi: 10.3969/j.issn.1673-629X.2019.10.009
    [14] ZAGHLOUL M A S, HASSAN A M, CARPENTER D, et al. Optical sensor behavior prediction using LSTM neural network[C]//2019 IEEE Photonics Conference (IPC). US: IEEE, 2019.
    [15] ZHANG A, TENG J, JU Y, et al. Thermal power prediction of nuclear reactor core based on LSTM[C]// 2019 Chinese Automation Congress (CAC). Hangzhou, China: IEEE, 2020.
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  340
  • HTML全文浏览量:  183
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-04
  • 修回日期:  2021-01-07
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回