高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数值反应堆多物理多尺度耦合技术进展研究

刘晓晶 谢秋霞 柴翔 程旭

刘晓晶, 谢秋霞, 柴翔, 程旭. 数值反应堆多物理多尺度耦合技术进展研究[J]. 核动力工程, 2021, 42(5): 1-7. doi: 10.13832/j.jnpe.2021.05.0001
引用本文: 刘晓晶, 谢秋霞, 柴翔, 程旭. 数值反应堆多物理多尺度耦合技术进展研究[J]. 核动力工程, 2021, 42(5): 1-7. doi: 10.13832/j.jnpe.2021.05.0001
Liu Xiaojing, Xie Qiuxia, Chai Xiang, Cheng Xu. Status and Progress of the Multi-Physics Coupling and Multi-Scale Coupling Research for Numerical Reactors[J]. Nuclear Power Engineering, 2021, 42(5): 1-7. doi: 10.13832/j.jnpe.2021.05.0001
Citation: Liu Xiaojing, Xie Qiuxia, Chai Xiang, Cheng Xu. Status and Progress of the Multi-Physics Coupling and Multi-Scale Coupling Research for Numerical Reactors[J]. Nuclear Power Engineering, 2021, 42(5): 1-7. doi: 10.13832/j.jnpe.2021.05.0001

数值反应堆多物理多尺度耦合技术进展研究

doi: 10.13832/j.jnpe.2021.05.0001
基金项目: 国家自然科学基金优秀青年科学基金(11922505)
详细信息
    作者简介:

    刘晓晶(1981—),男,博士,研究员,主要从事反应堆热工水力安全、先进核能系统及数值反应堆技术研究,E-mail: xiaojingliu@sjtu.edu.cn

  • 中图分类号: TL31

Status and Progress of the Multi-Physics Coupling and Multi-Scale Coupling Research for Numerical Reactors

  • 摘要: 介绍了数值反应堆的基本概念,详细调研了国际上针对数值反应堆开展的研发项目,如轻水堆先进仿真联盟(CASL)、欧洲核反应堆仿真通用平台(NURESIM)和核能先进仿真与建模(NEAMS)项目,总结了多物理耦合及多尺度耦合技术的国内外研究现状,并结合研究现状指出材料腐蚀行为与流动传热、中子物理共同作用下的多物理耦合机理、基于统一网格求解的高保真耦合程序开发是数值反应堆技术发展的重点方向。

     

  • 图  1  传统显式耦合图解

    Figure  1.  Diagram of Traditional Explicit Coupling

    图  2  传统隐式耦合图解

    Figure  2.  Diagram of Traditional Implicit Coupling

    图  3  核-热-材多物理耦合示意图

    Figure  3.  Diagram of Nuclear-Heat-Material Multi-Physics Coupling

  • [1] 廖玮,于洋,刘东. 开发数字化反应堆提升反应堆设计与研发能力[J]. 中国核工业,2016(2): 44-47+64.
    [2] KROPACZEK D J. Consortium for advanced simulation of light water reactors: CASL-U-2020-1974-000[R]. United States: Oak Ridge National Lab(ORNL), 2020.
    [3] CACUCI D G, ARAGONÉS J M, BESTION D, et al. NURESIM: a European platform for nuclear reactor simulation[C]. Luxembourg: Conference on EU Research and Training in Reactor Systems, 2006.
    [4] CHANARON B. Overview of the NURESAFE European project[J]. Nuclear Engineering and Design, 2017(321): 1-7.
    [5] VERSLUIS R M. NEAMS software verification and validation plan requirements version 0[EB/OL]. (2013-09-09)[2021-02-24]. https://www.energy.gov/ne/downloads/nuclear-energy-advanced-modeling-and-simulation-neams-software-verification-and.
    [6] XU Y. A matrix free Newton/Krylov method for coupling complex multi-physics subsystems[D]. West Lafayette: Purdue University, 2004.
    [7] 冯竟超. 先进反应堆热工水力与多物理场耦合程序开发及应用研究[D]. 合肥: 中国科学技术大学, 2017.
    [8] ZERKAK O, KOZLOWSKI T, GAJEV I. Review of multi-physics temporal coupling methods for analysis of nuclear reactors[J]. Annals of Nuclear Energy, 2015(84): 225-233.
    [9] BEAM T M, IVANOV K N, BARATTA A J, et al. Nodal kinetics model upgrade in the Penn State coupled TRAC/NEM codes[J]. Annals of Nuclear Energy, 1999, 26(13): 1205-1219. doi: 10.1016/S0306-4549(99)00006-7
    [10] BARBER D A, WANG W, MILLER R M, et al. Application of a generalized interface module to the coupling of PARCS with both RELAP5 and TRAC-M[R]. United States: Los Alamos National Lab, 1999.
    [11] LIAO C, XIE Z. The coupled kinetic and thermal-hydraulic three dimensional code system NLSANMT/COBRA-IV for PWR core transient analysis[J]. Annals of Nuclear Energy, 2003, 30(04): 405-412. doi: 10.1016/S0306-4549(02)00077-4
    [12] KLIEM S, KOZMENKOV Y. Comparative analysis of a pump cast-down transient using the coupled code systems DYN3D-ATHLET and DYN3D-RELAP5: FZR-407[R]. Germany: Institute of Safety Research, 2003.
    [13] BAKANOV V V, ZHITNIK A K, MOTLOKHOV V N, et al. TDMCC Monte-Carlo package coupled with STAR-CD thermal-hydraulics code[J]. Transactions of the American Nuclear Society, 2004(91): 250-251.
    [14] HAN G J, JIN Y C, KIM Y, et al. Consistent comparison of Monte Carlo and whole-core transport solutions for cores with thermal feedback[C]. Chicago: PHYSOR 2004-the Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments, 2004: 25-29.
    [15] WAATA C, SCHULENBERG T, XU C. Coupling of MCNPX with a sub-channel code for analysis of a HPLWR fuel assembly[C]. Avignon, France: International Topical Meeting on Nuclear Reactor Thermal Hydraulics, 2005.
    [16] LOZANO J A, JIMENEZ J, GARCÍA-HERRANZ N, et al. Development and performance of the ANDES/COBRA-III coupled system in hexagonal-z geometry[C]. New York: International Conference on Mathematics, Computational Methods and Reactor Physics, 2009.
    [17] 史敦福,李康,秦桂明,等. 蒙卡中子输运程序JMCT和子通道热工水力程序COBRA-EN耦合计算[J]. 强激光与粒子束,2017, 29(3): 32-38.
    [18] SEUBERT A, LAURIEN E. The transient 3-D transport coupled code TORT-TD/ATTICA3D for high-fidelity pebble-bed HTGR analyses[J]. Transport Theory and Statistical Physics, 2012, 41(1-2): 133-152. doi: 10.1080/00411450.2012.671212
    [19] ZHANG D L, ZHAI Z G, RINEISKI A, et al. Couple, a time-dependent coupled neutronics and thermal-hydraulics code, and its application to MSFR[C]. Prague: Proceedings of the 2014 22nd International Conference on Nuclear Engineering (ICONE22), 2014.
    [20] MARZANO M J. Approach to coupling 3-D deterministic neutron transport and full field computational fluid dynamics[D]. Gainesville: University of Florida, 2011.
    [21] GOMEZ-TORRES A M, SANCHEZ-ESPINOZA V H, IVANOV K, et al. DYNSUB: A high fidelity coupled code system for the evaluation of local safety parameters-Part II: comparison of different temporal schemes[J]. Annals of Nuclear Energy, 2012, 48(12): 123-129.
    [22] WU X, KOZLOWSKI T. Coupling of system thermal-hydraulics and Monte-Carlo method for a consistent thermal-hydraulics-reactor physics feedback[C]. Charlotte: International Congress on Advances in Nuclear Power Plants, 2013.
    [23] GUO J, LIU S, SHANG X, et al. Versatility and stabilization improvements of full core neutronics/thermal-hydraulics coupling between RMC and CTF[J]. Nuclear Engineering and Design, 2018(332): 88-98.
    [24] TOTH A, KELLEY C T, SLATTERY S, et al. Analysis of anderson acceleration on a simplified neutronics/thermal hydraulics system[C]. Nashville, Tennessee, USA: Joint International Conference on Mathematics and Computation(M&C), Supercomputing in Nuclear Applications(SNA), and the Monte Carlo(MC) Method, 2015.
    [25] TUOMINEN R, VALTAVIRTA V, LEPPÄNEN J. Application of the Serpent–OpenFOAM coupled code system to the SEALER reactor core[C]. Cancun, Mexico: PHYSOR 2018: Reactor Physics Paving the Way towards More Efficient Systems, 2018.
    [26] 苏光辉, 秋穗正, 田文喜. 核动力系统热工水力计算方法[M]. 北京: 清华大学出版社, 2013.
    [27] ANDERSON N, HASSAN Y, SCHULTZ R. Analysis of the hot gas flow in the outlet plenum of the VHTR using coupled RELAP5-3D system code and a CFD code[J]. Nuclear Engineering and Design, 2008, 238(1): 274-279. doi: 10.1016/j.nucengdes.2007.06.008
    [28] TURZÓ K, LEWITOWICZ M, HARAKEH M N. ENSAR, a nuclear science project for European research area[J]. Nuclear Physics News, 2015, 25(3): 3-4. doi: 10.1080/10619127.2015.1073512
    [29] 刘余,张虹,贾宝山. 核反应堆热工水力多尺度耦合模拟初步研究[J]. 核动力工程,2010, 31(S1): 11-15.
    [30] 贾斌,马帅,史强,等. 非能动压水堆热工水力多尺度耦合计算分析研究[J]. 核科学与工程,2018, 38(5): 763-773. doi: 10.3969/j.issn.0258-0918.2018.05.006
    [31] 李书舟. 铅基快堆子通道耦合分析方法研究及应用[D]. 合肥: 中国科学技术大学, 2017.
    [32] BUONGIORNO J. Can corrosion and CRUD actually improve safety margins in LWRs?[J]. Annals of Nuclear Energy, 2014, 63(1): 9-21.
    [33] CHABICOVSKY M, HNIZDIL MTSENG A A, et al. Effects of oxide layer on Leidenfrost temperature during spray cooling of steel at high temperatures[J]. International Journal of Heat and Mass Transfer, 2015, 88(9): 236-246.
    [34] SINHA J. Effects of surface roughness, oxidation level, and liquid subcooling on the minimum film boiling temperature[J]. Experimental Heat Transfer, 2003, 16(1): 45-60. doi: 10.1080/08916150390126478
    [35] SALKO R K, BLYTH T, DANCES C, et al. CASL Consortium for advanced simulation of LWRs: L3: PHI. VCS. P9.02CTF validation: CASL-U-2014-0169- 000[R]. USA: Oak Ridge National Laboratory and Pennsylvania State University, 2014.
  • 加载中
图(3)
计量
  • 文章访问数:  779
  • HTML全文浏览量:  159
  • PDF下载量:  288
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-24
  • 修回日期:  2021-03-27
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回