高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

5×5全长棒束组件通道过冷沸腾工况下均匀与非均匀轴向功率分布对比分析

张君毅 闫晓

张君毅, 闫晓. 5×5全长棒束组件通道过冷沸腾工况下均匀与非均匀轴向功率分布对比分析[J]. 核动力工程, 2021, 42(5): 8-14. doi: 10.13832/j.jnpe.2021.05.0008
引用本文: 张君毅, 闫晓. 5×5全长棒束组件通道过冷沸腾工况下均匀与非均匀轴向功率分布对比分析[J]. 核动力工程, 2021, 42(5): 8-14. doi: 10.13832/j.jnpe.2021.05.0008
Zhang Junyi, Yan Xiao. Comparison of Subcooled Flow Boiling in a Full-Length 5×5 Rod Bundle between Uniform and Non-Uniform-Axial Power Distribution[J]. Nuclear Power Engineering, 2021, 42(5): 8-14. doi: 10.13832/j.jnpe.2021.05.0008
Citation: Zhang Junyi, Yan Xiao. Comparison of Subcooled Flow Boiling in a Full-Length 5×5 Rod Bundle between Uniform and Non-Uniform-Axial Power Distribution[J]. Nuclear Power Engineering, 2021, 42(5): 8-14. doi: 10.13832/j.jnpe.2021.05.0008

5×5全长棒束组件通道过冷沸腾工况下均匀与非均匀轴向功率分布对比分析

doi: 10.13832/j.jnpe.2021.05.0008
详细信息
    作者简介:

    张君毅(1985—),男,研究员,现主要从事反应堆热工水力及安全传热等研究工作,E-mail: 5699212@qq.com

    通讯作者:

    闫 晓,E-mail: yanxiao_npic@163.com

  • 中图分类号: TL334

Comparison of Subcooled Flow Boiling in a Full-Length 5×5 Rod Bundle between Uniform and Non-Uniform-Axial Power Distribution

  • 摘要: 压水堆燃料组件结构采用正方形排列的棒束形式,本文采用计算流体力学(CFD)方法对5×5全长棒束中过冷沸腾传条件下的均匀轴向功率分布(U-APD)和非均匀轴向功率分布(Non-U-APD)工况进行了热工水力性能对比分析。分析结果表明,所采用的壁面沸腾模型、相间作用力界面力模型和气泡尺寸分布模型能够较好地预测5×5全长棒束组件通道过冷沸腾工况的传热过程。通过对比发现Non-U-APD工况下,棒束通道内平均空泡份额起始点较均匀加热工况提前,增长速度较U-APD工况更快。在子通道平均值方面,Non-U-APD工况下角通道末端平均空泡份额要高于U-APD工况,而中心通道基本相同。Non-U-APD工况下,在第5个和第6个搅混格架(MVG)下游,文中所分析的角通道和中心通道的液相质量流速逐渐低于U-APD工况。

     

  • 图  1  PSBT基准题定位格架示意图

    Figure  1.  Schematics of the Spacer Grid of PSBT

    图  2  5×5全长棒束组件定位格架轴向布置图

    Figure  2.  Schematics of the 5×5 Full-length Rod Bundle and Layout of Spacer Grids

    图  3  Non-U-APD归一化分布曲线

    Figure  3.  Non-U-APD Normalized Distribution Curve

    图  4  棒束横截面平均X e 轴向发展对比曲线

    Figure  4.  Comparison of Cross-Section Averaged Xe along Axial Orientation

    图  5  棒束横截面平均空泡份额轴向发展对比曲线

    Figure  5.  Comparison of Cross-Section Averaged Void Fraction along Axial Orientation

    图  6  定位格架搅混翼布置和子通道编号

    Figure  6.  Schematics of Layout of MVG and the Definitions of Sub-Channels

    图  7  角通道平均液相质量流速轴向发展对比

    Figure  7.  Comparisons of Sub-Channel-Averaged Liquid Mass Flux along Axial Orientation in Corner channels

    图  8  角通道平均空泡份额轴向发展对比

    Figure  8.  Comparisons of Sub-Channel-Averaged Void Fraction along Axial Orientation in Corner channels

    图  9  中心通道平均液相质量流速轴向发展对比

    Figure  9.  Comparisons of Sub-Channel-Averaged Liquid Mass Flux along Axial Orientation in Central Channels

    图  10  中心通道平均空泡份额轴向发展对比

    Figure  10.  Comparisons of Sub-Channel-Averaged Void Fraction along Axial Orientation in Central channels

  • [1] LO S, OSMAN J. CFD modeling of boiling flow in PSBT 5×5 bundle[J]. Science and Technology of Nuclear Installations, 2012(2012): 795935.
    [2] GOODHEART K, ALLEBORN N, CHATELAIN A, et al. Analysis of the interfacial area transport model for industrial 2-phase boiling flow application[C]. Italy: Proceedings of the 15th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, NURETH-15, Pisa, 2013.
    [3] LUTSANYCH S, MORETTI F, D’AURIA F. Validation of NEPTUNE CFD two-phase flow models against OECD/NRC PSBT subchannel experiments[J]. Nuclear Engineering and Design, 2017(321): 82-91. doi: 10.1016/j.nucengdes.2017.02.005
    [4] CONG T L, ZHANG R, CHEN L J, et al. Studies on the subcooled boiling in a fuel assembly with 5 by 5 rods using an improved wall boiling model[J]. Annals of Nuclear Energy, 2018(114): 413-426. doi: 10.1016/j.anucene.2017.12.058
    [5] 张蕊,干富军,左巧林,等. 压水堆燃料棒束通道内过冷沸腾分析[J]. 原子能科学技术,2015, 49(9): 1579-1585. doi: 10.7538/yzk.2015.49.09.1579
    [6] 韩斌,杨保文,张汇,等. 过冷沸腾工况下不同刚凸结构对定位格架热工水力性能影响的数值模拟分析[J]. 核动力工程,2017, 38(3): 158-163.
    [7] 李松蔚,李仲春,杜思佳,等. 带7道格架的5×5棒束两相性能CFD分析[J]. 核动力工程,2019, 40(3): 185-190.
    [8] 杜利鹏,陈晓龙,张鹏飞,等. 带定位格架的5×5棒束通道内过冷沸腾流动传热数值研究[J]. 动力工程学报,2019, 39(8): 679-685. doi: 10.3969/j.issn.1674-7607.2019.08.012
    [9] LI L, WANG M, ZHANG D, et al. A subcooled boiling model developed for narrow rectangular channels based on the CFD method[C]. U.S.: Proceedings of the 18th International Topical Meeting on Nuclear Thermal Hydraulics (NURETH-18). Portland, Oregon, 2019.
    [10] KURUL N, PODOWSKI M Z. Multidimensional effects in forced convection subcooled boiling[C]. Israel: Proceedings of the 9th International Heat Transfer Conference. Jerusalem, 1990: 21-26.
    [11] KOCAMUSTAFAOGULLARI G. Pressure dependence of bubble departure diameter for water[J]. International Communications in Heat and Mass Transfer, 1983, 10(6): 501-509. doi: 10.1016/0735-1933(83)90057-X
    [12] KOCAMUSTAFAOGULLARI G, ISHII M. Interfacial area and nucleation site density in boiling systems[J]. International Journal of Heat and Mass Transfer, 1983, 26(9): 1377-1387. doi: 10.1016/S0017-9310(83)80069-6
    [13] COLE R. A photographic study of pool boiling in the region of the critical heat flux[J]. AIChE Journal, 1960, 6(4): 533-538. doi: 10.1002/aic.690060405
    [14] TOMIYAMA A, KATAOKA I, ZUN I, et al. Drag coefficients of single bubbles under normal and micro gravity conditions[J]. JSME International Journal Series B Fluids and Thermal Engineering, 1998, 41(2): 472-479. doi: 10.1299/jsmeb.41.472
    [15] LO S, ZHANG D S. Modelling of break-up and coalescence in bubbly two-phase flows[J]. The Journal of Computational Multiphase Flows, 2009, 1(1): 23-38. doi: 10.1260/175748209787387106
    [16] RUBIN A, SCHOEDEL A, AVRAMOVA M, et al. OECD/NRC Benchmark based on NUPECPWR sub-channel and bundle tests (PSBT): volume Ⅰ: experimental database and final problem specifications[R]. Knoxville: US NRC and OECD Nuclear Energy Agency, 2010.
    [17] 张君毅,闫晓,肖泽军,等. 均匀加热全长棒束过冷沸腾工况子通道参数场计算分析[J]. 原子能科学技术,2018, 52(1): 48-55.
  • 加载中
图(10)
计量
  • 文章访问数:  282
  • HTML全文浏览量:  162
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-31
  • 修回日期:  2021-07-05
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回