Numerical Simulation of Turbulent Mixing of LBE between Sub-Channels of Wire-Wrapped Fuel Assembly
-
摘要: 液态铅铋合金(LBE)是第四代液态金属核反应堆候选冷却剂,由于LBE热物性具有一定的特殊性,亟待对LBE在燃料组件子通道中的流动与传热过程开展研究。本文对LBE在带绕丝燃料棒组件中湍流流动进行数值模拟与分析,将燃料棒壁面温度的数值模拟结果与响应的实验数据相比较,2者具有较高的吻合度,说明数学模型及数值结果具有较高的可靠性与准确性;使用湍流交混系数β表征LBE在不同子通道间、不同燃料棒间隙宽度与燃料棒直径比(S/D)结构下的湍流交混情况,结果表明,不同子通道间β波动程度具有差异性,β的大小与S/D呈负相关。基于不同S/D与雷诺数的计算结果,拟合出不同子通道间β关联式,为绕丝燃料棒三角形排列方式的燃料组件子通道分析程序开发提供交混模型。
-
关键词:
- 液态铅铋合金(LBE) /
- 湍流交混 /
- 绕丝燃料棒组件 /
- 子通道分析
Abstract: The lead-bismuth eutectic (LBE) is a candidate coolant for the fourth generation liquid metal reactors. In view of its special thermophysical properties, its flow and heat transfer process in the fuel assembly sub-channels need to be studied. For this purpose, the authors conduct numerical simulation and analysis of the turbulent flow of the LBE in the wire-wrapped fuel assembly, and compare the numerical simulation results of the wall temperature of fuel rods with the experimental data for response. The simulation results agree well with the experimental data, indicating that the mathematical model and numerical results are highly reliable and accurate. The authors also characterize the turbulent mixing of LBE between different sub-channels at different values of the ratio of spacing between fuel rods to the fuel rod diameter (S/D), using the turbulent mixing coefficient β. The characterization results show that the fluctuation of β between different sub-channels varies and that the β value is negatively correlated with the S/D. Based on different calculation results of the S/D and Renolyd number, the correlation formula for the β between different sub-channels is obtained by fit. It provides a turbulent mixing model for the development of a sub-channel analysis code of fuel assembly consisting of wire-wrapped fuel rods arranged in triangular form.-
Key words:
- LBE /
- Turbulent mixing /
- Wire-wrapped fuel assembly /
- Sub-channel analysis
-
表 1 燃料组件几何参数
Table 1. Geometric Parameters of Fuel Assembly
参数名 参数值 燃料棒排列方式 三角形栅格排列 燃料棒根数 7 燃料棒直径/mm 8.2 燃料棒中心距/mm 10.49 燃料棒间隙宽度/mm 2.29 燃料棒长度/mm 870 绕丝直径/mm 2.2 绕丝螺距/mm 328 燃料组件壁面对边距/mm 31.6 表 2 燃料棒壁面温度与子通道LBE温度的计算结果与实验结果对比
Table 2. Comparison of Calculation and Experimental Results of Fuel Rod Wall Surface Temperature and LBE Temperature in Sub-Channels
z=0.0546 m 燃料棒(实验)序号 燃料棒(CFD)序号 实验值/℃ CFD结果/℃ 误差/% 1 1 221.2 213.8 −3.34 8 2 219.8 218.0 −0.80 10 3 217.2 216.0 −3.68 14 5 222.5 216.2 −2.82 18 7 216.1 214.7 −0.66 子通道(实验)序号 子通道(CFD)序号 实验值/℃ CFD结果/℃ 误差/% 1 1 204.7 203.1 −0.81 25 7 206.1 200.9 −2.50 37 13 201.7 200.3 −0.71 z=0.6013 m 燃料棒(实验)序号 燃料棒(CFD)序号 实验值/℃ CFD结果/℃ 误差/% 1 1 295.2 278.1 −5.79 10 3 268.3 239.2 −10.86 14 5 264.7 245.3 −7.32 16 6 261.2 255.5 −6.09 18 7 278.3 274.1 −1.51 子通道(实验)序号 子通道(CFD)序号 实验值/℃ CFD结果/℃ 误差/% 5 5 272.2 263.9 −3.04 33 11 254.4 236.7 −6.56 41 17 238.0 223.5 −6.1 z=0.8200 m 燃料棒(实验)序号 燃料棒(CFD)序号 实验值/℃ CFD结果/℃ 误差/% 1 1 318.0 291.4 −8.35 10 3 287.5 258.1 −10.21 12 4 280.6 263.5 −6.11 14 5 295.1 291.8 −1.12 18 7 287.8 265.4 −7.77 子通道(实验)序号 子通道(CFD)序号 实验值/℃ CFD结果/℃ 误差/% 3 3 298.1 277.4 −6.93 29 9 275.4 248.7 −9.71 39 15 259.9 233.5 −10.14 -
[1] CHENG X, TAK N I. CFD analysis of thermal–hydraulic behavior of heavy liquid metals in sub-channels[J]. Nuclear Engineering and Design, 2006, 236(18): 1874-1885. doi: 10.1016/j.nucengdes.2006.02.001 [2] AZAD H M, SHIRANI A S. The effect of various pressure drop and flow mixing correlations on subchannel calculation of sodium temperature distribution in a 19 pins wire wrapped bundle[J]. Progress in Nuclear Energy, 2017(34): 26-37. [3] 高鑫钊,任丽霞. 铅铋快堆燃料组件热工水力学数值模拟研究[J]. 科技创新与应用,2019(22): 1-4. [4] 刘余,杜思佳,李仲春. 子通道分析中的湍流交混研究综述[J]. 核动力工程,2017,38(3): 132-136. [5] SHEN D, LIU X, XU C. A study on geometric shape factors for turbulent mixing coefficents in rod bundles[J]. Nuclear Engineering and Design, 2019(353): 123-146. [6] ANGELIA D, FREGNIB A, STALIOB E. Direct numerical simulation of turbulent forced and mixed convection of LBE in a bundle of heated rods with P/D=1.4[J]. Nuclear Engineering and Design, 2019(355): 89-103. [7] PACIO J, WETZEL T, DOOLAARD H, et al. Thermal-hydraulic study of the LBE-cooled fuel assembly in the MYRRHA reactor: Experiments and simulations[J]. Nuclear Engineering and Design, 2017(312): 327-337. [8] PACIO J, DAUBNER M, FELLMOSER F, et al. Experimental study of heavy-liquid metal (LBE) flow and heat transfer along a hexagonal 19-rod bundle with wire spacers[J]. Nuclear Engineering and Design, 2016(301): 111-127. [9] WU Y. Design and R&D progress of China lead-based reactor for ADS research facility[J]. Engineering, 2016, 2(1): 124-131. doi: 10.1016/J.ENG.2016.01.023