Study on the Effect of MA Nuclides Transmutation on Safety in Lead-Cooled Fast Reactors
-
摘要: 铅冷快堆可用于对乏燃料中部分次锕系(MA)核素进行后处理,为研究MA核素的添加是否会影响反应堆安全性能,本文设计了3种MA核素添加方式,分析研究了MA核素在铅冷快堆中嬗变对堆芯临界性能、堆芯寿期和燃料温度系数的影响。结果表明,MA核素的添加会对堆芯临界性能产生影响,使堆芯初始临界性能下降;镀层和混合燃料添加方式对铅冷快堆的寿期有明显的延长,嬗变棒添加方式根据添加位置不同对堆芯寿期的影响不同;MA核素的添加会引起燃料温度系数的改变,但燃料温度系数始终为负。本文提出的3种添加方式均可行,但是嬗变棒添加方式需要注意嬗变棒位置对堆芯寿期的影响,不建议采用较为集中的嬗变棒分布方式。Abstract: The lead-cooled fast reactor can be used for the post-processing of part of the minor actinides (MA) nuclides contained in the spent fuel. This study designs three modes of adding MA nuclides to analyze and study the effect of the MA nuclides transmutation on the core critical performance, core life cycle and fuel temperature coefficient thus to study the effect of the MA nuclides addition on the reactor safety performance. The results show that the addition of MA nuclides reduces the initial critical performance of the core; that the addition by either coating or mixing with fuel can significantly extend the life cycle of the lead-cooled fast reactor, while the addition of transmutation rod has different effect on the core life cycle depending on the rod location; and that the addition of MA nuclides causes the change of fuel temperature coefficient, which, however, remains negative. All of the three addition modes are feasible. In particular, attention should be paid to the effect of the transmutation rod location on the core life cycle. It is not advisable to distribute the transmutation rods in a concentrated area.
-
Key words:
- Lead-cooled fast reactor /
- MA nuclides transmutation /
- Safety
-
表 1 轻水堆卸料中MA各核素的比例[12]
Table 1. Proportions of MA Nuclides of Fuel Unloaded from Light Water Reactor
核素 237Np 241Am 243Am 244Cm 245Cm 质量比/% 56.18 26.40 12.00 5.14 0.28 表 2 堆芯设计参数
Table 2. Core Design Parameters
参数名 参数值 功率/MW 750 主冷却剂 纯铅 主系统类型 池式,密集型 冷却剂进/出口温度/℃ 420/540 冷却剂最大流速/(m·s−1) 1.8 包壳材料类型 T91型铁素体-马氏体钢 堆芯主要结构材料 316型不锈钢 增殖区材料类型 UO2 (99.28%238U+0.72%235U) 控制棒材料类型 B4C(92%10B+8%11B) 堆芯燃料类型 MOX燃料 燃料中钚质量分数(PuO2/MOX)/% 13.8、16.5、21.2 燃料组件形状 六棱柱 燃料芯块直径/mm 9.1 燃料棒间距/mm 13.6 堆芯燃料组件数 205 每个燃料组件中燃料棒数目 91 堆芯总尺寸(直径/高)/m 3.4/3.14 -
[1] 顾忠茂. 核能与先进核燃料循环技术发展动向[J]. 现代电力,2006, 23(5): 89-94. doi: 10.3969/j.issn.1007-2322.2006.05.014 [2] BAETSLE L H, WAKAHAYASHI T, SAKURAI S. Global´99 Proceedings of the international conference on future nuclear system: status and assessment report on actinide and fission product partitioning and transmutation, an oecd nuclear energy agency review[M]. USA: American Nuclear Society(ANS), 1999. [3] 顾忠茂, 叶国安. 先进核燃料循环体系研究进展[J]. 原子能科学技术,2002, 36(2): 160. doi: 10.3969/j.issn.1000-6931.2002.02.016 [4] 梁彤祥, 唐春和. 长寿命放射性废料的嬗变处理[J]. 核技术,2003, 26(12): 935-939. doi: 10.3321/j.issn:0253-3219.2003.12.008 [5] 张玉山. 从广义自持链式反应观点看加速器驱动系统[J]. 核科学与工程,2001, 21(4): 375-380. doi: 10.3321/j.issn:0258-0918.2001.04.016 [6] RIDIKAS D, PLUKIENE R, PLUKIS A, et al. Fusion–fission hybrid system for nuclear waste transmutation (I): Characterization of the system and burn-up calculations[J]. Progress in Nuclear Energy, 2006, 48(3): 235-246. doi: 10.1016/j.pnucene.2005.09.004 [7] HOFFMAN E A, STACEY W M. Nuclear and fuel cycle analysis for a fusion transmutation of waste reactor[J]. Fusion Engineering & Design, 2002, 63-64(12): 87-91. [8] SERIKOV A, SHATALOV G, SHELUDJAKOV S, et al. Possibility of fusion power reactor to transmute minor actinides of spent nuclear fuel[J]. Fusion Engineering & Design, 2002, 63(02): 93-99. [9] CHAMBERS A, RAGUSA J C. Multi-recycling of transuranic elements in a PWR assembly with reduced fuel rod diameter[J]. Nuclear Engineering & Design, 2014, 270(270): 436-450. [10] MACDONALD P E, BUONGIORNO J. Design of an Actinide burning, Lead-Bismuth cooled reactor that produces low electricity[R]. Idaho: Idaho National Engineering and Environmental Laboratory, 2002. [11] ZHOU S, WU H, ZHENG Y. Flexibility of ADS for minor actinides transmutation in different two-stage PWR-ADS fuel cycle scenarios[J]. Annals of Nuclear Energy, 2018, 111(1): 271-279. [12] 王悦. 钠冷快堆嬗变长寿命高放射性废物物理特性初步分析[D]. 北京: 华北电力大学(北京), 2011.