高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向协方差矩阵抽样的快堆不确定性分析方法研究

朱润泽 马续波 王冬勇 张斌 彭星杰 王连杰

朱润泽, 马续波, 王冬勇, 张斌, 彭星杰, 王连杰. 面向协方差矩阵抽样的快堆不确定性分析方法研究[J]. 核动力工程, 2021, 42(5): 81-85. doi: 10.13832/j.jnpe.2021.05.0081
引用本文: 朱润泽, 马续波, 王冬勇, 张斌, 彭星杰, 王连杰. 面向协方差矩阵抽样的快堆不确定性分析方法研究[J]. 核动力工程, 2021, 42(5): 81-85. doi: 10.13832/j.jnpe.2021.05.0081
Zhu Runze, Ma Xubo, Wang Dongyong, Zhang Bin, Peng Xingjie, Wang Lianjie. Study on Uncertainty Analysis Method of Fast Reactor Based on Covariance Matrix Sampling[J]. Nuclear Power Engineering, 2021, 42(5): 81-85. doi: 10.13832/j.jnpe.2021.05.0081
Citation: Zhu Runze, Ma Xubo, Wang Dongyong, Zhang Bin, Peng Xingjie, Wang Lianjie. Study on Uncertainty Analysis Method of Fast Reactor Based on Covariance Matrix Sampling[J]. Nuclear Power Engineering, 2021, 42(5): 81-85. doi: 10.13832/j.jnpe.2021.05.0081

面向协方差矩阵抽样的快堆不确定性分析方法研究

doi: 10.13832/j.jnpe.2021.05.0081
基金项目: 国家自然科学基金项目(11875128);中央高校基本科研业务费专项资金资助(2018MS044)
详细信息
    作者简介:

    朱润泽(1997—),女,硕士研究生,从事反应堆物理核数据库不确定性研究,E-mail: runze_z@139.com

    通讯作者:

    马续波,E-mail: maxb@ncepu.edu.cn

  • 中图分类号: TL329

Study on Uncertainty Analysis Method of Fast Reactor Based on Covariance Matrix Sampling

  • 摘要: 基于传统统计学抽样的不确定性分析方法由于算法简单、程序容易实现及同时考虑高阶效应受到国内外广泛关注,但上述方法通常需要大量样本才能保证响应量计算精度。研究发现,产生以上现象的原因是抽样样本质量不高。通过改进抽样方法,面向协方差矩阵抽样时小样本量可以保证较高的计算精度。文中首先从理论上证明了面向协方差矩阵抽样方法的可行性,用简单测试题对其进行验证。在此基础上,使用自主开发的快能谱反应堆敏感性和不确定性分析程序SUFR,选取国际快堆基准装置ZPR-6/7,计算多个核素不同反应类型的核截面引起的有效增殖因子(keff)的不确定度,并与使用确定论方法计算的不确定度进行对比。结果表明,使用面向协方差矩阵抽样的情况下,样本量为50时,2种方法计算的不确定度偏差均低于1.3%。由此说明,面向协方差矩阵抽样方法可以很好地解决传统抽样方法计算不确定度时存在的问题,且SUFR程序面向协方差矩阵抽样功能的开发是正确的,该方法是对传统抽样方法的进一步发展。

     

  • 图  1  SUFR程序计算流程

    Figure  1.  Calculation Process of the SUFR Code

    表  1  4种情况下的二维随机样本协方差矩阵

    Table  1.   Two-Dimensional Random Sample Covariance Matrix in Four Cases

    样本量方法1方法2方法3方法4
    50$\left( {\begin{array}{*{20}{c}} {{\text{4}}{\text{.199}}}&{ - {\text{1}}{\text{.219}}} \\ { - {\text{1}}{\text{.219}}}&{1{\text{1}}{\text{.859}}} \end{array}} \right)$$\left( {\begin{array}{*{20}{c}} {{\text{3}}{\text{.999}}}&{0.{\text{009}}} \\ {0.{\text{009}}}&{{\text{9}}{\text{.001}}} \end{array}} \right)$$\left( {\begin{array}{*{20}{c}} {{\text{3}}{\text{.983}}}&{ - {\text{0}}{\text{.227}}} \\ { - {\text{0}}{\text{.227}}}&{{\text{8}}{\text{.831}}} \end{array}} \right)$$\left( {\begin{array}{*{20}{c}} {\text{4}}&0 \\ 0&{\text{9}} \end{array}} \right)$
    200$\left( {\begin{array}{*{20}{c}} {{\text{3}}{\text{.301}}}&{ - {\text{0}}{\text{.422}}} \\ { - {\text{0}}{\text{.422}}}&{{\text{9}}{\text{.259}}} \end{array}} \right)$$\left( {\begin{array}{*{20}{c}} {{\text{3}}{\text{.995}}}&{{\text{0}}{\text{.050}}} \\ {0.{\text{050}}}&{{\text{9}}{\text{.011}}} \end{array}} \right)$$\left( {\begin{array}{*{20}{c}} {{\text{3}}{\text{.965}}}&{ - {\text{0}}{\text{.211}}} \\ { - {\text{0}}{\text{.211}}}&{{\text{8}}{\text{.858}}} \end{array}} \right)$$\left( {\begin{array}{*{20}{c}} {\text{4}}&0 \\ 0&{\text{9}} \end{array}} \right)$
    103$\left( {\begin{array}{*{20}{c}} {{\text{3}}{\text{.863}}}&{ - {\text{0}}{\text{.082}}} \\ { - {\text{0}}{\text{.082}}}&{{\text{9}}{\text{.147}}} \end{array}} \right)$$\left( {\begin{array}{*{20}{c}} {{\text{4}}{\text{.000}}}&{0.{\text{001}}} \\ {0.{\text{001}}}&{{\text{9}}{\text{.000}}} \end{array}} \right)$$\left( {\begin{array}{*{20}{c}} {{\text{3}}{\text{.886}}}&{ - {\text{0}}{\text{.129}}} \\ { - {\text{0}}{\text{.129}}}&{{\text{8}}{\text{.758}}} \end{array}} \right)$$\left( {\begin{array}{*{20}{c}} {\text{4}}&0 \\ 0&{\text{9}} \end{array}} \right)$
    104$\left( {\begin{array}{*{20}{c}} {{\text{3}}{\text{.957}}}&{0.{\text{077}}} \\ {{\text{0}}{\text{.077}}}&{{\text{8}}{\text{.963}}} \end{array}} \right)$$\left( {\begin{array}{*{20}{c}} {{\text{4}}{\text{.000}}}&{-{\text{ 0}}{\text{.003}}} \\ {-{\text{ 0}}{\text{.003}}}&{{\text{9}}{\text{.000}}} \end{array}} \right)$$\left( {\begin{array}{*{20}{c}} {{\text{3}}{\text{.884}}}&{{\text{0}}{\text{.004}}} \\ {{\text{0}}{\text{.004}}}&{{\text{8}}{\text{.739}}} \end{array}} \right)$$\left( {\begin{array}{*{20}{c}} {\text{4}}&0 \\ 0&{\text{9}} \end{array}} \right)$
    下载: 导出CSV

    表  2  2种方法计算的多群截面引起的keff不确定度

    Table  2.   Uncertainty of keff due to Multigroup Cross Section Calculated by Two Methods

    核素反应类型面向协方差矩阵抽样
    方法/10−4
    确定论方法/10−4相对偏差/%
    235Uσγ2.37832.37830
    σelas0.019980.0199800
    σinel0.0697640.069779−0.02
    σf0.502250.502240
    v0.797840.797840
    238Uσγ33.49133.4080.25
    σelas9.88969.80970.81
    σinel64.83265.496−1.01
    σf4.09664.1066−0.24
    v15.20115.1990
    239Puσγ31.18331.1830
    σelas1.07311.07280.023
    σinel5.64505.7155−1.23
    σf23.83723.843−0.02
    v7.17277.17270
    56Feσγ10.37310.3520.21
    σelas9.44489.39370.54
    σinel10.95410.9220.29
    23Naσγ1.54061.5540−0.86
    σelas4.14184.13320.21
    σinel7.02917.0317−0.04
    下载: 导出CSV
  • [1] SALVATORES M, JACQMIN R. International evaluation co-operation volume 26: Uncertainty and target accuracy assessment for innovative systems using recent covariance data evaluations: NEA/WPEC-26, ISBN 978-92-64-99053-1[R]. Paris: OECD Nuclear Energy Agency, 2008.
    [2] OECD. International evaluation co-operation volume 33: methods and issues for the combined use of integral experiments and covariance data: NEA/WPEC-33, NEA/NSC/WPEC/DOC(2013)445[R]. Paris: OECD, 2013.
    [3] RIMPAULT G, BUIRON L, STAUFF N E, et al. Objectives and status of the OECD/NEA sub-group on uncertainty analysis in modelling (UAM) for design, operation and safety analysis of SFRs (SFR-UAM)[C]//International Conference on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development (FR17). 2017
    [4] PERFETTI C, REARDEN B. CE TSUNAMI-3D algorithm improvements in SCALE 6.2[J]. Transactions of the American Nuclear Society,2016, 114(6): 948.
    [5] KODELI I. The SUSD3D code for cross-section sensitivity and uncertainty analysis - recent development, invited[J]. Transactions of the American Nuclear Society, 2011, 104: 791-793.
    [6] WILLIAMS M L, ILAS G, JESSEE M A, et al. A statistical sampling method for uncertainty analysis with SCALE and XSUSA[J]. Nuclear Technology, 2013, 183(3): 515-526. doi: 10.13182/NT12-112
    [7] 刘勇. 基于微扰理论的反应堆物理计算敏感性与不确定性分析方法及应用研究[D]. 西安: 西安交通大学, 2017.
    [8] 万承辉. 核反应堆物理计算敏感性和不确定性分析及其在程序确认中的应用研究[D]. 西安: 西安交通大学, 2018.
    [9] 胡泽华,王佳,孙伟力,等. 基准模型keff对核数据的灵敏度分析及不确定度量化[J]. 原子能科学技术,2013, 47(S1): 312-317.
    [10] 胡泽华,叶涛,刘雄国,等. 抽样法与灵敏度法keff不确定度量化[J]. 物理学报,2017, 66(1): 012801. doi: 10.7498/aps.66.012801
    [11] SUI Z J, CAO L Z, WAN C H, et al. Covariance-oriented sample transformation: a new sampling method for reactor-physics uncertainty analysis[J]. Annals of Nuclear Energy, 2019, 134: 452-463. doi: 10.1016/j.anucene.2019.07.001
    [12] 马续波,刘佳艺,徐佳意,等. 相关变量随机数序列产生方法[J]. 物理学报,2017, 66(16): 160201. doi: 10.7498/aps.66.160201
    [13] SIMTH M A, LELL R M, MONEO P, et al. ZPR-6 ASSEMBLY 7: A cylindrical assembly with mixed (pu-u)-oxide fuel and sodium with a thick depleted-uranium reflector: NEA/NSC/DOC(95)03/VI[R]. Argonne National Laborary, 2003.
    [14] MACFARLANE R E, MUIR D W, BOICOURT R M, et al. The NJOY nuclear data processing system version 2012: LA-UR-12-27079[R]. Los Alamos: Los Alamos National Laboratory, 2012.
    [15] DERSTINE K L. DIF3D: A code to solve one-, two-, and three-dimensional finite-difference diffusion theory problems: ANL-SF-12-048[R]. Argonne: Argonne National Laboratory, 1984.
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  76
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-21
  • 修回日期:  2020-08-29
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回