高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带定位格架的类三角形堆芯通道超临界水传热试验研究

王为术 黄志豪 徐维晖 马自强 朱晓静 毕勤成

王为术, 黄志豪, 徐维晖, 马自强, 朱晓静, 毕勤成. 带定位格架的类三角形堆芯通道超临界水传热试验研究[J]. 核动力工程, 2021, 42(5): 90-95. doi: 10.13832/j.jnpe.2021.05.0090
引用本文: 王为术, 黄志豪, 徐维晖, 马自强, 朱晓静, 毕勤成. 带定位格架的类三角形堆芯通道超临界水传热试验研究[J]. 核动力工程, 2021, 42(5): 90-95. doi: 10.13832/j.jnpe.2021.05.0090
Wang Weishu, Huang Zhihao, Xu Weihui, Ma Ziqiang, Zhu Xiaojing, Bi Qincheng. Experiemental Study on Heat Transfer of Supercritical Water in Triangular Channel of Reactor Core with Spacer Grid[J]. Nuclear Power Engineering, 2021, 42(5): 90-95. doi: 10.13832/j.jnpe.2021.05.0090
Citation: Wang Weishu, Huang Zhihao, Xu Weihui, Ma Ziqiang, Zhu Xiaojing, Bi Qincheng. Experiemental Study on Heat Transfer of Supercritical Water in Triangular Channel of Reactor Core with Spacer Grid[J]. Nuclear Power Engineering, 2021, 42(5): 90-95. doi: 10.13832/j.jnpe.2021.05.0090

带定位格架的类三角形堆芯通道超临界水传热试验研究

doi: 10.13832/j.jnpe.2021.05.0090
基金项目: 国家自然科学基金项目(51876024,51976204);河南省高校科技创新团队支持计划资助(16IRTSTHN017)
详细信息
    作者简介:

    王为术(1972—),男,教授,博士研究生,主要从事多相流传热、反应堆安全传热研究工作,E-mail: wangweishu@ncwu.edu.cn

  • 中图分类号: TL33

Experiemental Study on Heat Transfer of Supercritical Water in Triangular Channel of Reactor Core with Spacer Grid

  • 摘要: 针对带定位格架的超临界水冷堆堆芯垂直上升类三角形子通道,开展超临界水的流动传热试验研究。反应堆堆芯类三角形子通道棒束直径为8 mm、栅距比为1.4,试验参数范围为:热流密度q=200~600 kW/m2、压力P=23~28 MPa、质量流速G=700~1300 kg/(m2·s)。分析了热流密度、压力和质量流速等热工参数对超临界水传热特性的影响。试验结果表明:定位格架处质量流速升高,流体扰动性增强,换热系数提升显著;在超临界压力下,提高压力会导致内壁温度上升,换热系数峰值降低;过高的热流密度会导致换热系数峰值降低,适当减小热流密度可提高换热性能;提高质量流速会导致内壁温度降低,换热系数峰值上升,能够显著提高换热性能。压力变化对定位格架区域传热特性影响较小,适当提升压力可提高系统安全性。

     

  • 图  1  系统布置图

    1—水箱;2—调节阀;3—滤网;4—高压柱塞泵;5—孔板流量;6—高效再生式换热器;7—预热段;8—试验段;9—冷却换热器;10—质量流量计;11—数据采集系统

    Figure  1.  System Layout

    图  2  子通道结构及测点布置情况

    NO.1—截面1,其余同

    Figure  2.  Sub-Channel Structure and Layout of Measuring Points      

    图  3  截面周向测点布置

    Figure  3.  Layout of Measuring Point in Circumferential Direction of Cross Section

    图  4  不同热流密度对换热性能影响

    Figure  4.  Effect of Different Heat Fluxes on Heat Transfer Performance

    图  5  不同压力对换热性能影响

    Figure  5.  Effect of Different Pressures on Heat Transfer Performance

    图  6  不同质量流速对换热性能影响

    Figure  6.  Effect of Different Mass Flow Rates on Heat Transfer Performance

    表  1  测量参数的不确定度

    Table  1.   Uncertainties of Parameters Measured

    参数最大不确定度
    工质流量±0.1%
    压力±0.15%
    工质温度±0.4℃
    壁面温度±0.5℃
    试验段直径±0.03 mm
    试验段壁厚±0.02 mm
    试验电压±0.5%
    试验电流±0.1%
    下载: 导出CSV
  • [1] XU J L, SUN E H, LI M J, et al. Key issues and solution strategies for supercritical carbon dioxide coal fired power plant[J]. Energy, 2018, 157(8): 227-246.
    [2] YAMAGATA K, NISHIKAWA K, HASEGAWA S, et al. Forced convection heat transfer to supercritical water flowing in tubes[J]. International Journal of Heat and Mass Transfer, 1972, 15(72): 2575-2593.
    [3] SHITSMANM M E. Impairment of the heat transmission at supercritical pressures[J]. High Temperature, 1963, 1(2): 237-244.
    [4] WANG W S, BI Q C, GU H F, et al. An investigation on heat transfer to water flowing in vertical upward internally ribbed enhancement tube at supercritical pressure[J]. Advanced Science Letters, 2011, 4(6-7): 2281-2288.
    [5] PIORO I L, KHARTABILL H F, DUFFEY R B. Heat transfer to supercritical fluids flowing in channels-empirical correlations(survey)[J]. Nuclear Engineering and Design, 2004, 230(1-3): 69-91. doi: 10.1016/j.nucengdes.2003.10.010
    [6] WANG J G, Li H X, GUO B, et al. Investigation of forced convection heat transfer of supercritical pressure water in a vertically upward internally ribbed tube[J]. Nuclear Engineering and Design, 2009, 239(10): 1956-1964. doi: 10.1016/j.nucengdes.2009.04.012
    [7] ZHU B G, XU J L, WU X M, et al. Supercritical “boiling” number, a new parameter to distinguish two regimes of carbon dioxide heat transfer in tubes[J]. International Journal of Thermal Sciences, 2019, 139(8): 254-266.
    [8] JIANG P X, LE Z, Xu R N. Experimental study of convective heat transfer of carbon dioxide at supercritical pressures in a horizontal rock fracture and its application to enhanced geothermal systems[J]. Applied Thermal Engineering, 2017, 117: 39-49. doi: 10.1016/j.applthermaleng.2017.01.078
    [9] CHENG X, KUANG B, YANG Y H. Numerical analysis of heat transfer in supercritical water cooled flow channels[J]. Nuclear Engineering and Design, 2007, 237(3): 240-252. doi: 10.1016/j.nucengdes.2006.06.011
    [10] ZHU X J, MOROOKA S, OKA Y. Numerical investigation of grid spacer effect on heat transfer of supercritical water flows in a tight rod bundle[J]. International Journal of Thermal Sciences, 2014, 76(2): 245-257.
    [11] YANG X B, SU G H, TIAN W X, et al. Numerical study on flow and heat transfer characteristics in the rod bundle channels under super critical pressure condition[J]. Annals of Nuclear Energy, 2010, 37(12): 1723-1734. doi: 10.1016/j.anucene.2010.07.008
    [12] ZHU X J, MOROOKA S, OKA Y. Numercial investigation of grid spacer effect on heat transfer of supercritical water flows in a tight rod bundle[J]. International Journal of Thermal Sciences, 2014, 76(76): 245-257.
    [13] 李永亮,曾小康,黄志刚,等. 简单通道内超临界水传热特性实验研究[J]. 核动力工程,2013, 34(1): 101-107. doi: 10.3969/j.issn.0258-0926.2013.01.022
    [14] WU G, BI Q C, YANG Z D, et al. Experimental investigation of heat transfer for supercritical pressure water flowing in vertical annular channels[J]. Nuclear Engineering and Design, 2011, 241(9): 4045-4054. doi: 10.1016/j.nucengdes.2011.07.007
    [15] YANG Z D, BI Q C, WANG H, et al. Experiment of heat transfer to supercritical water flowing in vertical annular channels[J]. Heat Transfer, 2013, 135(4): 676-709.
    [16] 王为术,路统,赵鹏飞,等. 超临界水冷堆类四边形子通道内超临界水的传热试验研究[J]. 中国电机工程学报,2014, 34(20): 3356-3361.
    [17] 赵鹏飞. 反应堆类四边形子通道内超临界水流动传热特性研究[D]. 郑州: 华北水利水电大学, 2014.
    [18] 路统. 超临界水冷堆类三角形子通道内超临界水传热的试验研究[D]. 郑州: 华北水利水电大学. 2015.
    [19] 李虹波,赵萌,顾汉洋,等. 棒束内超临界水传热实验研究[J]. 原子能科学技术,2015, 49(11): 2017-2023. doi: 10.7538/yzk.2015.49.10.2017
    [20] 何斯琪,顾汉洋,李虹波,等. 带格架四棒束超临界水流动传热数值分析[J]. 原子能科学技术,2014, 48(2): 257-262. doi: 10.7538/yzk.2014.48.02.0257
    [21] WANG H, BI Q C, YANG Z D, et al. Experimental and numerical study on the enhanced effect of spiral spacer to heat transfer of supercritical pressure water in vertical annular channels[J]. Applied Thermal Engineering, 2012, 48(15): 436-445.
    [22] 干富军,刘达,顾汉洋,等. 棒束通道中格架对传热影响的实验研究[J]. 原子能科学技术,2019, 53(04): 648-653.
    [23] 许多挺. 环管内超临界水流动传热实验研究及数值计算[D]. 上海: 上海交通大学, 2014.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  110
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-08
  • 修回日期:  2021-03-20
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回