Experimental Study on Flow Mixing Characteristics of Lower Plenum of Small PWR
-
摘要: 为研究小型压水堆下腔室的交混特性,本文基于比例模化方法,开展小型压水堆1∶3比例模型水力学实验,通过测量溶液浓度变化,获得在冷管流量均衡和非均衡工况下堆芯入口的交混因子矩阵。研究结果表明,均衡流量工况下,冷管流量的变化对堆芯入口交混因子矩阵未产生明显影响;非均衡流量工况下,靠近出口管的燃料组件交混因子受流量不均衡的影响较大,而中心区域的交混因子变化幅度较小。由此可见,小型压水堆在均衡流量下具有较稳定的下腔室交混特性,而在非均衡工况下需要重点关注出口附近燃料组件交混特性的变化。Abstract: In order to study the flow mixing characteristics of lower plenum of small pressurized-water reactor (PWR), this study conducts a hydraulic experiment on the reactor model in scale of 1∶3 based on the scaling method, and obtains the flow mixing factor matrices for the core inlet under the balanced and unbalanced flow conditions of the cold leg by measuring the solution concentration change. The results show that under the balanced flow condition, the changes of cold leg flow have slight effect on the core inlet flow mixing factor matrix, while under the unbalanced flow condition, the fuel assembly flow mixing factor near the outlet pipe is significantly affected by the flow unbalance, and that small change occurs to the flow mixing factor in the central region. Therefore, the flow mixing characteristics of lower plenum of small PWR are stable at the balanced flow, and focus should be put on the change in flow mixing characteristics of fuel assemblies near the outlet under the unbalanced flow condition.
-
Key words:
- Small PWR /
- Flow mixing in lower plenum /
- Unbalanced flow /
- Flow mixing factor
-
表 1 均衡流量实验工况表
Table 1. Experimental Conditions of Balanced Flow
序号 Ⅰ环路流量 Ⅱ环路流量 1 1.0Vp 1.0Vp 2 0.8Vp 0.8Vp 3 0.6Vp 0.6Vp 表 2 非均衡流量实验工况表
Table 2. Experimental Conditions of Unbalanced Flow
序号 Ⅰ环路流量 Ⅱ环路流量 流量比 1 1.0Vp 0.8Vp 1.25 2 1.2Vp 0.8Vp 1.5 3 1.0Vp 0.6Vp 1.67 -
[1] 眭曦,朱勇辉,方颖,等. 反应堆压力容器下腔室交混特性的数值模拟方法研究[J]. 原子能科学技术,2017, 51(2): 286-291. doi: 10.7538/yzk.2017.51.02.0286 [2] 王盛,杨来生,李朋洲,等. CNP1000反应堆下空腔交混及压降试验研究[J]. 原子能科学技术,2007, 41(S): 151-155. [3] HETSRONI G. Hydraulic tests of the San-Onofre Reactor Model: WCAP-3296-8[R]. Pittsburgh, United States: Westinghouse Electric Corporation, 1964. [4] 杨来生,宗桂芳,胡俊. 秦山核电二期工程反应堆水力模拟实验模型的简化[J]. 核动力工程,2003, 24(2): 212-215. [5] CHOI Y S, PARK G C, UM K S. A study on the coolant mixing phenomena in the reactor lower plenum[J]. Journal of the Korean Nuclear Society, 1997, 29(3): 186-195. [6] KLIEM S, SUHNEL T, ROHDE U, et al. Experimental at the mixing test facility ROCOM for benchmarking of CFD-codes[J]. Nuclear Engineering and Design, 2008, 238(3): 566-576. doi: 10.1016/j.nucengdes.2007.02.053 [7] 汪利民,宗桂芳. 电站压水堆堆芯模拟技术[J]. 工程热物理学报,2000, 21(1): 50-53. doi: 10.3321/j.issn:0253-231X.2000.01.013 [8] 毛辉辉,卢川,张宏亮,等. 秦山二期核电厂反应堆下腔室交混特性CFD分析研究[J]. 原子能科学技术,2015, 49(1): 47-50. doi: 10.7538/yzk.2015.49.01.0047 [9] BÖTTCHER M. Detailed CFX-5 study of the coolant mixing within the reactor pressure vessel of a VVER-1000 reactor during a non-symmetrical heat-up test[J]. Nuclear Engineering and Design, 2008, 238(3): 445-452. doi: 10.1016/j.nucengdes.2007.02.054 [10] ZHANG G, YANG Y H, GU H Y, et al. Coolant distribution and mixing at the core inlet of PWR in a real geometry[J]. Annals of Nuclear Energy, 2013(60): 187-194. [11] 陈长植. 工程流体力学[M]. 武汉: 华中科技大学出版社, 2008. [12] HETSRONI G. Use of hydraulic models in nuclear reactor design[J]. Nuclear Science and Engineering, 1967, 28: 1-11. doi: 10.13182/NSE67-A18661 [13] 孙启才. 压水堆水力模化中Eu数的讨论[J]. 核动力工程,1985, 6(5): 47-50. [14] KHAN E U. Analytical investigation and design of a model hydro-dynamically simulating a prototype PWR core[J]. Nuclear Technology, 1972, 16(3): 470-496. [15] 桂学文,蔡琦,邾明亮. 双环路压水堆非对称入口条件下物理-热工特性研究[J]. 原子能科学技术,2010, 44(S): 216-221.