Study on Room Temperature Fracture Behavior of Main Pipeline Materials at Medium and Low Loading Rate
-
摘要: 核电厂主管道在长期服役下,母材及焊接处可能出现裂纹,需要对主管道材料及焊接材料在中低加载速率下的断裂性能进行研究,避免主管道在强地震冲击下可能出现的双端剪切断裂。基于Instron VHS高速材料试验机,开发了一套材料在中低加载速率下的断裂性能测试方法,测量了核电厂主管道材料控氮00Cr17Ni12Mo2及焊接材料OK Tigrod 316L在0.5 m/s加载速率以内的常温断裂性能。结果表明,常温下核电厂主管道材料控氮00Cr17Ni12Mo2在0.5 m/s冲击速率以内并不启裂,焊接材料OK Tigrod 316L在0.5 m/s加载速率以内的断裂韧性并未出现明显的规律性变化。Abstract: Cracks may occur at the base metal and welding joint of the main pipeline of a nuclear power plant (NPP) during the long-term service. Therefore, it is necessary to study the fracture behavior of the main pipeline material and welding material at medium and low loading rate to avoid the possible double-ended guillotine break of the main pipeline under strong earthquake impact. This study, relying on the Instron VHS high strain rate testing machine for materials, develops a set of testing method for fracture behavior of materials at medium and low loading rate, which in turn is used to measure the room temperature fracture behaviors of main pipeline nitrogen-containing material (00Cr17Ni12Mo2) and welding material (OK Tigrod 316L) within the loading rate of 0.5 m/s in a NPP. As observed from the results, under the room temperature, the main pipeline nitrogen-containing material (00Cr17Ni12Mo2) shows no crack initiation within the impact rate of 0.5 m/s, and the fracture toughness of the welding material (OK Tigrod 316L) indicates no obvious regular change within the loading rate of 0.5 m/s.
-
Key words:
- Main pipeline /
- Crack /
- Fracture toughness /
- Dynamic fracture
-
表 1 控氮00Cr17Ni12Mo2不锈钢化学成分(质量分数) %
Table 1. Chemical Compositions of Nitrogen-Containing Stainless Steel 00Cr17Ni12Mo2 (Mass Fraction)
元素 C Si Ni Cu Mn Cr Mo N 含量 0.014 0.67 12.02 0.049 1.47 17.53 2.51 0.092 表 2 OK Tigrod 316L焊材化学成分(质量分数) %
Table 2. Chemical Compositions of Welding Material OK Tigrod 316L (Mass Fraction)
元素 C Si Ni Cu Mn Cr Mo N 含量 0.016 0.41 12.26 0.077 1.55 18.49 2.52 0.047 表 3 OK Tigrod 316L焊材在0.5 m/s以内不同加载速率下的JQ0.2、JQ0.5和JQ1
Table 3. JQ0.2, JQ0.5 and JQ1 of Welding Material OK Tigrod 316L at Different Levels of Loading Rate within 0.5 m/s
加载速率/(m·s−1) JQ0.2/(kJ·m−2) JQ0.5/(kJ·m−2) JQ1/(kJ·m−2) 准静态 599 875 1286 0.015 589 781 1227 0.05 616 802 1213 0.15 629 806 1153 0.5 577 722 1069 -
[1] 李强,岑鹏,甄洪栋. 核电厂高能管道LBB分析技术概述[J]. 核动力工程,2011(32): 189-191. [2] 何风,吕勇波,艾红雷,等. LBB技术在核电站管道系统中的应用[J]. 管道技术与设备,2016(2): 1-4. doi: 10.3969/j.issn.1004-9614.2016.02.001 [3] 蒋东梅,杜颖,袁小兰. LBB在AP1000技术中的应用[J]. 南华大学学报(自然科学版),2015(29): 7-11. [4] 乔红威,李琦,刘志伟,等. LBB设计中管道贯穿裂纹张开位移计泄漏率计算研究[J]. 核技术,2013(36): 040619. [5] RADON J C, TURNER C E. Fracture toughness measurements by instrumented impact test[J]. Engineering fracture mechanics, 1969(1): 411-428. [6] KABAYASHI A S, SEO K K. A dynamic analysis of modifier compact-tension specimen using homolite-100 and polycarbonate plates[J]. Experimental Mechanics, 1980(20): 73-79. [7] 杨滨,轩福贞. 基于夏比冲击吸收能量的断裂韧性估算方法比较[J]. 压力容器,2016(33): 32-39. [8] 潘建华,陈学东,韩豫. −196℃奥氏体不锈钢母材与焊缝的动态断裂韧性[J]. 爆炸与冲击,2013(33): 381-386. [9] SATHYANARAYANAN S, SINGH J, MOITRA A, et al. Effect of loading rate and constraint on dynamic ductile fracture toughness of P91 steel[M]. Proceedings of Fatigue, Durability and Fracture Mechanics, Springer Nature Singapore Pte Led. 2018: 185-201. [10] 王琼皎,郭伟国,左红星,等. 超强钢18NiC250在不同加载速度下的断裂韧性[J]. 爆炸与冲击,2013(33): 238-242. [11] 孟庆良,夏源明. 弹塑性材料裂纹扩展的动态J阻力曲线实验研究简介[J]. 机械强度,2004(26): 172-176. [12] 许泽建,李玉龙,李娜,等. 加载速度对高强钢40Cr和30CrMnSiNi2A I型动态断裂韧性的影响[J]. 金属学报,2006(42): 965-970. [13] 宫能平,李贤. 45#钢动态断裂韧性测试的试验研究[J]. 安徽理工大学学报(自然科学版),2007(27): 65-68. [14] 崔新忠,范亚夫,纪伟,等. 用Hopkinson杆技术研究材料动态断裂韧性的进展[J]. 兵器材料科学与工程,2010(33): 418-427.