Cause Analysis and Solution of Main Steam Pipe Vibration in a Nuclear Power Plant
-
摘要: 某核电厂在升功率试验及满功率运行时,发现主控室的噪声超过了设计目标值。经过测量,认为主蒸汽管道振动并通过支撑和贯穿件传播到主控室是造成主控室噪声超标的主要原因之一。本文应用流体力学软件和声学分析软件,采用流声耦合分析的方法,对主蒸汽管道的流场和声场进行了分析。在主蒸汽安全阀支管处和主蒸汽隔离阀空腔中存在着声共振现象,是导致主蒸汽管道振动的主要原因。根据主蒸汽管道振动的原因,可以通过振动源头治理、传播路径治理等方法降低主控室噪声。Abstract: During the power increase test and full power operation, a nuclear power plant (NPP) found that the noise in the main control room (MCR) exceeded the design target value. After measurement, the vibration of the main steam pipe and its transmission to the MCR through the supports and penetrations are considered as one of the main reasons for the excessive noise in the MCR. In view of this situation, this paper uses the fluid dynamics code and acoustic analysis code to analyze the flow field and sound field of the main steam pipe in the flow-sound coupled analysis method. Acoustic resonance is found at the branch pipe of the main steam safety valve and in the cavity of the main steam isolation valve (MSIV), which is the main cause for the main steam pipe vibration. Considering the causes for the main steam pipe vibration, the MCR noise can be reduced by vibration source control, transmission path control and other means.
-
Key words:
- Main steam pipe /
- Noise /
- Acoustic resonance
-
表 1 主蒸汽管道系统定常流场计算设置
Table 1. Calculation Setting of Steady Flow Field of Main Steam Pipe System
名称 设置 入口条件 速度进口 出口条件 压力出口 湍流模型 SST k-ω模型 速度压力耦合方式 SIMPLE算法 空间离散 二阶精度 表 2 主蒸汽管道系统非定常流场计算设置
Table 2. Calculation Setting of Unsteady Flow Field of Main Steam Pipe System
名称 设置 入口条件 速度进口 出口条件 压力出口 湍流模型 LES/Samorinsky-Lily 速度压力耦合方式 SIMPLE算法 空间离散 二阶精度 时间步长t1/时间步数 0.0002/2000 时间步长t2/时间步数 0.0001/2000 -
[1] 孙永滨,蒋晓华. 压水堆核电站先进控制室布置设计[J]. 核动力工程,2008, 29(3): 73-77. [2] 颜军明,袁少波,史庆峰,等. 核电厂调试期间核级管道振动的测量实施和评价[J]. 核动力工程,2011, 32(S1): 179-181. [3] 张海林. 浅析核电站管道振动[J]. 科技资讯,2017, 15(5): 68, 70. [4] 黄超, 张锴, 肖瑶, 等. 大管径主管上旁支管流致声共振实验研究[J]. 核动力工程,2020, 41(4): 79-84. [5] HANSON R, MOHANY A, ZIADA S. Flow-excited acoustic resonance of two side-by-side cylinders in cross-flow[J]. Journal of Fluids and Structures, 2009, 25(1): 80-94. doi: 10.1016/j.jfluidstructs.2008.03.008 [6] ZIADA S, SHINE S. Strouhal numbers of flow-excited acoustic resonance of closed side branches[J]. Journal of Fluids and Structures, 1999, 13(1): 127-142. doi: 10.1006/jfls.1998.0189