Assessment of No-Core-Melt Concept for Pressure Tube Supercritical Water Cooled Reactors under Extreme Accidents
-
摘要: 在自主研发的事故分析程序SCTRAN的基础上,开发并验证了二维导热模型和辐射换热模型,并将改进后的SCTRAN应用于加拿大压力管式超临界水堆在失水事故(LOCA)叠加丧失紧急堆芯冷却系统(LOECC)事故中的堆芯安全评估,并对燃料棒到慢化剂之间的传热效率以及关键的影响因素进行了评估。计算结果表明,在LOCA叠加LOECC工况下,燃料棒到燃料通道的辐射换热和燃料棒到蒸汽的自然对流换热能够有效导出反应堆的衰变余热,最高功率的燃料组件内、外圈燃料棒的最高包壳温度分别为1278℃和1192℃,均低于不锈钢包壳的熔化温度,因此整个事故过程中不会发生堆芯熔化。
-
关键词:
- 失水事故 /
- 压力管式超临界水堆(PT-SCWR) /
- 无堆芯熔化 /
- 辐射换热 /
- 二维导热
Abstract: This paper develops and verifies the two-dimensional (2D) heat conduction model and radiation heat transfer model based on the self-developed accident analysis code SCTRAN, applies the improved SCTRAN code to the core safety assessment of the Canadian pressure tube supercritical water cooled reactor (PT-SCWR) under the loss-of-coolant accident (LOCA) plus loss of emergency core cooling system (LOECC) accident, and assesses the heat transfer efficiency between the fuel rods and moderator and the key factors. The assessment results show that the residual decay heat of the reactor can be effectively removed by the radiation heat transfer from the fuel rods to fuel channels and the natural convection heat exchange from the fuel rods to steam and that the maximum cladding temperatures of the fuel rods in inner and outer rings of the fuel assembly at the maximum power are 1,278℃ and 1,192℃, respectively, which are below the stainless steel cladding melting temperature. Therefore, no core meltdown occurs throughout the accident.-
Key words:
- LOCA /
- PT-SCWR /
- No-core-melt /
- Radiation heat transfer /
- 2D heat conduction
-
表 1 PT-SCWR的主要系统参数
Table 1. Main System Parameters of PT-SCWR
参数名 参数值 堆芯压力/MPa 26 热功率/电功率/MW 2500/1200 热效率/% 48 进口/出口冷却剂温度/℃ 350/625 燃料通道数量 336 燃料通道内的燃料棒数量 64 中子谱/反应堆类型 热谱/压力管型 冷却剂 轻水 慢化剂 重水 主冷却剂流量/(kg·s−1) 1254 活性堆芯高度/m 5.0 包壳材料 不锈钢 表 2 PT-SCWR的燃料组件尺寸及材料
Table 2. Geomety and Materials of Fuel Assembly of PT-SCWR
部件 参数 数值/mm 材料 中心通道 内径 94 不锈钢SS-310 厚度 1 内部衬管 内径 144 不锈钢SS-310 厚度 0.5 绝热层 厚度 5.5 氧化钇稳定氧化锆(YSZ) 外部衬管 厚度 0.5 不锈钢SS-310 压力管 厚度 12 锆合金 外径 181 -
[1] ISHIWATARI Y, OKA Y, KOSHIZUKA S. Safety of the super LWR[J]. Nuclear Engineering and Technology, 2007, 39(4): 257-272. doi: 10.5516/NET.2007.39.4.257 [2] 刘亮, 周涛, 陈杰, 等. 超临界水堆典型事故分析[J]. 核动力工程,2016, 37(2): 151-155. [3] BUSHBY S J, DIMMICK G R, DUFFEY R B, et al. Conceptual designs for advanced, high-temperature candu reactors[C]//SCR-2000: 1. International Symposium on Supercritical Water-Cooled Reactors, Design and Technology, Tokyo, 2000: 29-36. [4] YETISIR M, GAUDET M, RHODES D. Development and integration of canadian scwr concept with counter-flow fuel assembly[C]//Proceedings of 6th International Symposium on Supercritical Water-Cooled Reactors (ISSCWR-6), Shenzhen, 2013. [5] NOVOG D, MCGEE G, RHODES D, et al. Safety concepts and systems of the canadian SCWR[C]//The 3rd China-Canada Joint Workshop on Supercritical-Water-Cooled Reactors (CCSC-2012), Xi’an, 2012. [6] 吴攀. 超临界水堆瞬态安全分析程序开发及非能动安全特性研究[D]. 西安: 西安交通大学, 2015. [7] 杨世铭, 陶文铨. 传热学[M]. 第四版. 北京: 高等教育出版社, 2006: 112-160. [8] LICHT J, XU R. Preliminary no-core melt assessment for the high efficiency channel preconceptual design[C]//Proceedings of the 3rd China-Canada Joint Workshop on Supercritical-Water-Cooled Reactors (CCSC-2012). Xi'an: China Nuclear Energy Association, 2012. [9] Cathena Code Development Team. Geofac user's manual (revision 2)[Z]. Canada: Atomic Energy of Canada Limited, 2007. [10] HANNA B N. Cathena: a thermalhydraulic code for candu analysis[J]. Nuclear Engineering and Design, 1998, 180(2): 113-131. doi: 10.1016/S0029-5493(97)00294-X [11] LEI Q M, GOODMAN T M. Validation of radiation heat transfer in CATHENA[C]//Proceedings of the International Conference on Simulation Methods in Nuclear Engineering. Montreal, 1996. [12] ISHIWATARI Y, OKA Y, KOSHIZUKA S, et al. Safety of super LWR, (II): safety analysis at supercritical pressure[J]. Journal of Nuclear Science and Technology, 2005, 42(11): 935-948. doi: 10.1080/18811248.2005.9711045