Study on Thermal Stratification of Marine Reactor Surge Line Based on Operating Data
-
摘要: 基于运行数据将船用堆波动管热分层划分为升功率、降功率、变工况、小喷淋流量4类典型瞬态,对4类典型瞬态分别进行无量纲里查德森数(Ri)分析、瞬态工况数值模拟计算,得到波动管在4类典型瞬态下水平管段的热分层区间长度、持续时间和最大温差。结果表明,升功率和降功率瞬态热分层仅单次贯穿波动管,升功率瞬态的接头部位循环的热波动以及小喷淋流量瞬态水平段的长区间、长时间、大温差的热分层现象和变工况导致的热应力波动可能影响到波动管的安全。本文提出的基于运行数据的波动管热分层现象研究方法为后续热应力和热疲劳分析奠定了基础,同时可以为其他容积设备热分层研究提供参考。Abstract: The thermal stratification of marine reactor surge line is divided into four types of typical transient based on the operating data: power increase, power decrease, off-design conditions, and small spray flow. The dimensionless Richardson number (Ri) analysis and the numerical simulation calculation of transient conditions are performed separately for these typical transients, generating the thermal stratification section length, duration and maximum temperature difference along the horizontal line section of the surge line under these typical transients. As indicated by the results, the thermal stratification under power increase and decrease transient conditions extends through the surge line just once, and the surge line safety may be affected by the circulating thermal fluctuation at the joint under the power increase transient condition, the thermal stratification of long section, long time and large temperature difference in the horizontal section under the small spray flow transient condition, and the thermal stress fluctuation caused by the off-design conditions. The method of study on thermal stratification of surge line based on operating data, proposed in this paper, lays a foundation for the subsequent thermal stress and thermal fatigue analyses, and also provides reference for the thermal stratification studies of other volumetric equipment.
-
Key words:
- Marine reactor /
- Operating data /
- Surge line /
- Thermal stratification /
- Typical transient
-
表 1 波动管模型参数
Table 1. Surge Line Model Parameters
主管道内径 Dm 波动管内径 D 主管道入口段长度 3Dm 波动管长度 181.4D 主管道出口段长度 3Dm 接口倒角直径 0.64D 表 2 边界条件
Table 2. Boundary Conditions
工况 ${v_{\rm{b}}}$ ${T_{\rm{b}}}$ ${T_{\rm{m}}}$ $Ri$ 升功率 ${v_1}$ $0.816{T_1}$ $0.698{T_1}$ 10.43 降功率 $ - 0.252{v_1}$ ${T_1}$ $0.852{T_1}$ 511.69 变工况“波入” $ - 3.371{v_1}$ ${T_1}$ $0.852{T_1}$ 2.85 变工况“波出” $3.371{v_1}$ ${T_1}$ $0.852{T_1}$ 2.85 小喷淋流量 $0.011{v_1}$ ${T_1}$ $0.852{T_1}$ 2.56×105 ${v_{\rm{b}}}$—波动管流速;${T_{\rm{b}}}$—稳压器温度;${T_{\rm{m}}}$—主管道温度;${v_1}$—设定的升功率瞬态“波出”流速;${T_1}$—反应堆功率运行时稳压器内冷却剂温度 表 3 计算结果
Table 3. Calculation Results
工况 监测点位置 持续时间/s 分层区长度 升功率 $ 50{D}_{1}{\text{、}}50{D}_{3}$ 50 $28.4D$ 降功率 $ 50{D}_{1}{\text{、}}50{D}_{3}$ 450 $64.8D$ 变工况“波入” $ 50{D}_{1}{\text{、}}50{D}_{3}$ 30 $47.7D$ 变工况“波出” $ 50{D}_{1}{\text{、}}50{D}_{3}$ 14 $34.1D$ 小喷淋流量 $ 10{D}_{1}{\text{、}}10{D}_{3}$ 2000 $45.5D$ -
[1] USNRC. Pressurizer Surge Line Thermal Stracation: NO. 88-11[R]. USA: NRC, 1988. [2] BLONDET E, FAIDY C. High cycle thermal fatigue in French PWM[C]. Arlington, VA, USA: ICONE10, 2002. [3] 余晓菲,张毅雄. 稳压器波动管热分层应力及疲劳分析[J]. 核动力工程,2011, 32(1): 5-8. [4] 唐鹏,刘志伟,乔红威,等. 稳压器波动管热分层应力强度可靠性分析[J]. 核动力工程,2019, 40(1): 100-103. [5] 曹思民,黄伟,杨明. 稳压器波动管内热纹振荡现象数值模拟研究[J]. 核动力工程,2017, 38(S2): 55-59. [6] ENSEL C, COLAS A. Stress anslysis of a 900MW pressurizer surge line including stratification effects[J]. Nuclear Engineering and Design, 2012(153): 197-203. [7] 梁兵兵,李岗,王高阳. 稳压器波动管考虑热分层影响的疲劳分析[J]. 原子能科学技术,2008, 42(Z): 448-453. [8] 张毅雄,杨宇. 稳压器波动管热分层分析[J]. 核动力工程,2006, 27(6): 13-17. [9] 张越, 卢涛. 压水堆波动管流动与传热及热-力耦合结构应力、变形与疲劳研究[D]. 北京: 北京化工大学, 2017. [10] 常牧, 陆道纲. 压水堆波动管热分层和温度震荡分析研究[D]. 北京: 华北电力大学, 2017. [11] 张微,孙中宁,王建军,等. 升功率工况下波动管热分层数值分析[J]. 原子能科学技术,2011, 45(11): 1325-1328. [12] YU J C. Marine nuclear power technology[M]. Shanghai: Shanghai Jiao Tong University Press, 2020: 6-7. [13] 唐家鹏. ANSYS FLUENT 16.0超级学习手册[M]. 北京: 人民邮电出版社, 2016: 94-119.