高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温气冷堆非纯氦气环境下高温合金碳迁移的化学动力学研究

郑伟 李昊翔 银华强 何学东 王秋豪 马涛

郑伟, 李昊翔, 银华强, 何学东, 王秋豪, 马涛. 高温气冷堆非纯氦气环境下高温合金碳迁移的化学动力学研究[J]. 核动力工程, 2021, 42(5): 226-231. doi: 10.13832/j.jnpe.2021.05.0226
引用本文: 郑伟, 李昊翔, 银华强, 何学东, 王秋豪, 马涛. 高温气冷堆非纯氦气环境下高温合金碳迁移的化学动力学研究[J]. 核动力工程, 2021, 42(5): 226-231. doi: 10.13832/j.jnpe.2021.05.0226
Zheng Wei, Li Haoxiang, Yin Huaqiang, He Xuedong, Wang Qiuhao, Ma Tao. Study on Chemical Kinetics of Carbon Migration in Superalloys in the Non-Pure Helium Environment in High Temperature Gas Cooled Reactors[J]. Nuclear Power Engineering, 2021, 42(5): 226-231. doi: 10.13832/j.jnpe.2021.05.0226
Citation: Zheng Wei, Li Haoxiang, Yin Huaqiang, He Xuedong, Wang Qiuhao, Ma Tao. Study on Chemical Kinetics of Carbon Migration in Superalloys in the Non-Pure Helium Environment in High Temperature Gas Cooled Reactors[J]. Nuclear Power Engineering, 2021, 42(5): 226-231. doi: 10.13832/j.jnpe.2021.05.0226

高温气冷堆非纯氦气环境下高温合金碳迁移的化学动力学研究

doi: 10.13832/j.jnpe.2021.05.0226
基金项目: 国家自然科学基金(11875176);国家重大科技专项经费项目(ZX069)
详细信息
    作者简介:

    郑 伟(1997—),男,在读博士研究生,现从事高温堆内杂质腐蚀研究,E-mail: zhengw19@mails.tsinghua.edu.cn

    通讯作者:

    银华强,E-mail: yinhuaqiang@tsinghua.edu.cn

  • 中图分类号: TL341

Study on Chemical Kinetics of Carbon Migration in Superalloys in the Non-Pure Helium Environment in High Temperature Gas Cooled Reactors

  • 摘要: 高温气冷堆(HTGR)一回路冷却剂中的低含量杂质在HTGR超高温运行时会对堆内高温合金产生严重的腐蚀。其中高温合金与非纯氦气之间的碳迁移对于材料性能影响很大。本文探究了高温合金在非纯氦气环境中碳迁移的化学动力学原理,并基于此获得了判断材料脱碳和渗碳的理论判据。根据化学热力学和化学动力学原理,对非纯氦气环境的氧分压和碳活度进行了计算,指明CH4与H2O的分压比值较高时可能导致合金严重渗碳。在此基础上介绍了一种应用广泛的碳迁移模型——“铬的稳定相图”,分析了铬活度计算方法并归纳出取值建议。本文根据铬的稳定相图计算得到了清华大学设计的10 MW高温气冷堆(HTR-10)的实际运行工况下的腐蚀行为。

     

  • 图  1  甲烷对碳活度的影响

    Figure  1.  Effect of Methane on Carbon Activity

    图  2  碳活度和氧分压在氧化层中的变化

    Figure  2.  Changes in Carbon Activity and Oxygen Partial Pressure in the Oxide Layer

    图  3  合金的铬活度与温度的曲线

    Figure  3.  Chromium Activity and Temperature of Alloys

    图  4  Inconel617合金在950℃下的稳定相图

    Figure  4.  Stable Phase Diagram of Inconel617 at 950 ℃

    图  5  HTR-10的各气体组分在Inconel 617合金的铬稳定相图中的表示

    Figure  5.  Representations of Gas Compositions of HTR-10 in the Chromium Stable Phase Diagram for Inconel 617

    表  1  高温堆中各种合金的主要成分质量分数 %

    Table  1.   Mass Fraction of Main Compositions of Alloys in HTGR

    高温合金类型主要成分质量分数
    CNiFeCr
    Inconel 6170.08Base22
    Nimonic 860.06Base25
    Incoloy 800H0.1032Base20
    Hastelloy X0.08Base22
    Hastelloy XR0.07Base18.1121.94
      Base—基体,该元素为主要成分;“—”表示无含量
    下载: 导出CSV

    表  2  不同高温合金的铬活度取值

    Table  2.   Chromium Activity Values of Different Superalloys

    高温合金类型aCr对数取值
    Inconel 617lg aCr$= 0.381 \times \left( { { {10000} \mathord{\left/{\vphantom { {10000} T} } \right.} T} } \right) - 3.673$
    Nimonic 86lg aCr$\approx 0.381 \times \left( { { {10000} \mathord{\left/{\vphantom { {10000} T} } \right.} T} } \right) - 3.673$
    Hayens 230ln aCr$ = 0.434 \times \left( { { {10000} \mathord{\left/{\vphantom { {10000} T} } \right.} T} } \right) - 3.897$
    Hastelloy Xlg aCr$ = 0.315 \times \left( { { {10000} \mathord{\left/{\vphantom { {10000} T} } \right.} T} } \right) - 2.809$
    Incoloy 800Hlg aCr$ \leqslant 0.315 \times \left( { { {10000} \mathord{\left/{\vphantom { {10000} T} } \right.} T} } \right) - 2.809$
    下载: 导出CSV

    表  3  HTR-10在750℃工况下氦气的杂质含量 ppm

    Table  3.   Impurity Content (ppm) of Helium in HTR-10 at 750℃

    气体H2COH2OCO2CH4O2
    1He2.432.010.11.850.360.34
    2He1.961.840.11.580.320.06
    3He2.461.690.11.580.370.42
    下载: 导出CSV
  • [1] SIMON R. The primary circuit of the dragon high temperature reactor experiment[C]//Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technology. Beijing, 2005.
    [2] ZIERMANN E. Review of 21 years of power operation at the AVR experimental nuclear power station in Jülich[J]. Nuclear Engineering and Design, 1990, 121(2): 135-142. doi: 10.1016/0029-5493(90)90098-I
    [3] QUADAKKERS W J. High temperature corrosion in the service environments of a nuclear process heat plant[J]. Materials Science and Engineering, 1987, 87: 107-112. doi: 10.1016/0025-5416(87)90366-1
    [4] FUJIKAWA S, HAYASHI H, NAKAZAWA T, et al. Achievement of reactor-outlet coolant temperature of 950℃ in HTTR[J]. Journal of Nuclear Science and Technology, 2004, 41(12): 1245-1254. doi: 10.1080/18811248.2004.9726354
    [5] SAKABA N, NAKAGAWA S, FURUSAWA T, et al. Coolant chemistry of the high temperature gas-cooled reactor ‘HTTR’[J]. Transactions of the Atomic Energy Society of Japan, 2004, 3(4): 388-395. doi: 10.3327/taesj2002.3.388
    [6] LUO X W, YU X L, YU S Y. Oxidation performance of graphite material in reactors[J]. Frontiers of Energy and Power Engineering in China, 2008, 2(4): 471-474. doi: 10.1007/s11708-008-0074-6
    [7] YU X L, YU S Y. Analysis of fuel element matrix graphite corrosion in HTR-PM for normal operating conditions[J]. Nuclear Engineering and Design, 2010, 240(4): 738-743. doi: 10.1016/j.nucengdes.2009.12.015
    [8] QUADAKKERS W J, SCHUSTER H. Thermodynamic and kinetic aspects of the corrosion of high-temperature alloys in high-temperature gas-cooled reactor helium[J]. Nuclear Technology, 1984, 66(2): 383-391. doi: 10.13182/NT84-A33441
    [9] QUADAKKERS W J, SCHUSTER H. Corrosion of high temperature alloys in the primary circuit helium of high temperature gas cooled reactors. -Part I: theoretical background[J]. Materials and Corrosion, 1985, 36(4): 141-150. doi: 10.1002/maco.19850360402
    [10] 石霖. 合金热力学[M]. 北京: 机械工业出版社, 1992: 539-540.
    [11] 池成忠,贺志勇,高原,等. 表面渗铬T8钢中碳迁移的热力学分析[J]. 中国表面工程,2004, 17(4): 38-41. doi: 10.3321/j.issn:1007-9289.2004.04.010
    [12] QUADAKKERS W J. Corrosion of high temperature alloys in the primary circuit helium of high temperature gas cooled reactors. Part II: Experimental Results[J]. Materials and Corrosion, 1985, 36(8): 335-347. doi: 10.1002/maco.19850360802
    [13] KURATA Y, OGAWA Y, NAKAJIMA H. Effect of carburizing helium environment on creep-behavior of Ni-base heat-resistant alloys for high-temperature gas-cooled reactors[J]. Journal of the Iron and Steel Institute of Japan, 1988, 74(11): 2185-2192. doi: 10.2355/tetsutohagane1955.74.11_2185
    [14] KURATA Y, OGAWA Y, NAKAJIMA H. Effect of decarburizing helium environment on creep behavior of Ni-base heat-resistant alloys for high-temperature gas-cooled reactors[J]. Journal of the Iron and Steel Institute of Japan, 1988, 74(2): 380-387. doi: 10.2355/tetsutohagane1955.74.2_380
    [15] HAMAMOTO S, SAKABA N, TAKEDA Y. Control method of purification system of helium coolant for suppressing decarburization of heat-resistant alloy used in very high temperature gas cooling reactors[J]. Transactions of the Atomic Energy Society of Japan, 2010, 9(2): 174-182. doi: 10.3327/taesj.J08.058
    [16] GOSSÉ S, ALPETTAZ T, CHATAIN S, et al. Chromium activity measurements in nickel based alloys for very high temperature reactors: Inconel 617, Haynes 230, and Model alloys[J]. Journal of Engineering for Gas Turbines and Power, 2009, 131(6): 062901. doi: 10.1115/1.3094017
    [17] HILPERT K, ALI-KHAN I. Mass spectrometric studies of alloys proposed for high-temperature reactor systems: I. Alloy in-643[J]. Journal of Nuclear Materials, 1978, 78(2): 265-271. doi: 10.1016/0022-3115(78)90447-6
    [18] HILPERT K, GERADS H, LUPTON D F. Mass spectrometric studies of alloys proposed for high temperature reactor systems: II. Inconel alloy 617 and Nimonic alloy PE 13[J]. Journal of Nuclear Materials, 1979, 80(1): 126-131. doi: 10.1016/0022-3115(79)90228-9
    [19] GOSSÉ S, ALPETTAZ T, ROUILLARD F, et al. Direct measurements of the chromium activity in complex nickel base alloys by high temperature mass spectrometry[J]. Materials Science Forum, 2008, 595-598: 975-985. doi: 10.4028/www.scientific.net/MSF.595-598.975
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  307
  • HTML全文浏览量:  177
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-26
  • 修回日期:  2021-02-26
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回