Study on Laser Decontamination Technology for Metal Scraps with Radioactively Contaminated Surfaces
-
摘要: 为实现激光去污技术在放射性表面污染金属废物清洁解控或循环再利用方面的应用,以350 W的纳秒脉冲光纤激光器为基础搭建了激光去污实验装置,针对激光功率、脉宽、频率、线间距、扫描速度等关键参数开展了一系列激光剥离去污工艺实验,根据实验结果分析得出激光去污工艺规律和不同去污深度的最佳工艺参数,并以某核电厂控制棒水池贮存搁架底板为对象开展验证试验。验证试验结果显示,采用激光去污技术,去污深度达到10 μm后,样品的β射线放射性表面污染水平已低于0.8 Bq/cm2,可达到清洁解控的表面污染水平要求。Abstract: In order to apply the laser decontamination technology to the clearance or recycling of metal scraps with radioactively contaminated surfaces, this study builds a laser decontamination experimental setup based on the 350 W nanosecond pulsed fiber laser. Then, this study conducts a series of experiments for the key parameters of the laser ablation and decontamination technology, including laser power, pulse duration, frequency, line spacing and scanning speed. According to these experimental results, the rule and the optimum parameters corresponding to different decontamination depths for the laser decontamination technology are obtained. This study in turn conducts verification test of this technology by applying it to the storage rack baseplate of the control rod pool for a nuclear power plant (NPP). The test results show that after the laser decontamination technology is used and the decontamination depth reaches 10 μm, the contamination level of the surface radioactively contaminated by β rays of the sample is reduced to less than 0.8 Bq/cm2, and can meet the clearance level.
-
Key words:
- Laser decontamination /
- Laser ablation /
- Radioactive /
- Metal scraps /
- Decontamination technology
-
表 1 350 W单模纳秒光纤激光器主要参数
Table 1. Main Parameters of 350 W Single-Mode Nanosecond Pulsed Fiber Laser
参数名 参数值 激光平均功率/W 350 功率调节范围/% 10~100 激光束质量因子 <1.8 激光频率/kHz 1~4000 脉冲宽度/ns 8~500 波长范围/nm 1060~1080 表 2 控制棒水池贮存搁架样片激光去污试验结果
Table 2. Laser Decontamination Test Results for Storage Rack Sample in Control Rod Pool
序号 样片编号 材料 去污深度
/μmβ射线放射性表面污染水平 活度浓度 去污前/(Bq·cm−2) 去污后/(Bq·cm−2) 去污因子 去污前/(Bq·g−1) 去污后/(Bq·g−1) 去污因子 1 10# 不锈钢 5 6.9 0.5 13.9 15.24 1.24 12.3 2 13# 不锈钢 5 36.7 2.4 16.2 37.71 2.076 18.2 3 11# 不锈钢 10 6.2 0.5 11.9 8.354 0.4894 17.1 4 15# 不锈钢 10 23.7 0.5 49.4 29.91 0.5282 56.6 5 12# 不锈钢 20 6.7 0.8 8.5 6.77 0.3999 16.9 6 16# 不锈钢 20 6.1 0.2 36.1 6.653 0.1442 46.1 7 19# 不锈钢 50 2.3 0.6 3.8 2.6556 0.1849 14.4 8 20# 不锈钢 50 48.4 0.7 73.3 53.93 0.50599 106.6 -
[1] Nuclear Energy Agency. Recycling and reuse of materials arising from the decommissioning of nuclear facilities[M]. Paris: OECD Publishing, 2017 [2] SAUL D, DAVIDSON G, WIRENDAL B. Treatment of Berkeley boilers in Studsvik-Project description and experiences[C]. Sweden: Symposium Metal Recycling of metals arising from operation and decommissioning of nuclear facilities, 2014 [3] 罗上庚, 张振涛, 张华. 核设施与辐射设施的退役[M]. 北京: 中国环境科学出版社, 2010 [4] 马鹏勋. 近年来日本对几项去污技术的研究及启示[J]. 辐射防护通讯,2007, 27(2): 18-23. doi: 10.3969/j.issn.1004-6356.2007.02.004 [5] 范凯,赵菀,张永领,等. 高能激光去污技术在核设施退役中的应用研究[J]. 核动力工程,2015, 36(S1): 207-210. [6] 峰原英介. レーザー除染装置の開発[J]. Journal of the RANDEC,2010(41): 22-30. [7] KAMEO Y, NAKASHIMA M, HIRABAYASHI T. New laser decontamination technique for radioactively contaminated metal surfaces using acid-bearing sodium silicate gel[J]. Journal of Nuclear Science and Technology, 2004, 41(9): 919-924. doi: 10.1080/18811248.2004.9715565 [8] BAIGALMAA B, WON H J, MOON J K, et al. A comprehensive study on the laser decontamination of surfaces contaminated with Cs+ ion[J]. Applied Radiation and Isotopes, 2009, 67(7-8): 1526-1529. doi: 10.1016/j.apradiso.2009.02.055 [9] MOGGIA F, LECARDONNEL X, DAMERVAL F. Surface decontamination using LASER ablation process-12032[C]. U.S.: WM2012 Conference. Phoenix, Arizona, 2012. [10] LIN Y C, LIN Y Y, HUANG Y H, et al. A compact and portable laser radioactive decontamination system using passive Q-switched fiber laser and polygon scanner[J]. Applied Radiation and Isotopes, 2019, 153: 108835. doi: 10.1016/j.apradiso.2019.108835