Design and Study of Critical Physical Test Scheme for Core with Hexagonal Jacketed Fuel
-
摘要: 为验证六边形套管型燃料堆芯核设计计算程序CELL和CPLEV2的计算精度和可靠性,本文根据六边形套管型燃料堆芯临界物理试验内容,提出了11个堆芯临界物理试验方案,并进行了计算论证分析。其中,临界质量测量方案考虑了计算与实际有偏差时,可以对堆芯布置进行微调,确保全提棒有效增殖因子与临界状态的偏差在可接受范围内。论证结果表明,本文提出的堆芯装载方案满足堆芯核设计程序可靠性检验要求,可以作为六边形套管型燃料堆芯临界物理试验方案。
-
关键词:
- 六边形套管型燃料堆芯 /
- 临界物理试验方案 /
- 临界质量测量方案 /
- 核设计计算程序
Abstract: This paper proposes 11 core critical physical test schemes and performs corresponding calculations, demonstration and analysis, based on the critical physical test contents of the core with hexagonal jacketed fuel, in order to verify the calculation accuracy and reliability of the nuclear design calculation codes CELL and CPLEV2 for such core. The critical mass measurement scheme considers a fine adjustment of the core layout in the presence of a deviation between the calculation and actual results to ensure that the deviation between the effective multiplication factor in the case of full rod withdrawal and critical state is acceptable. The demonstration shows that the core loading scheme proposed in this paper meets the reliability test requirements for the core design code and can be used as the critical physical test scheme for the core with hexagonal jacketed fuel. -
表 1 各试验方案包含组件类型设计
Table 1. Fuel Assambly Types Involved in Different Test Schemes
组件类型 方案 1 2 3 4 5 6 7 8 9 10-1 10-2 燃料组件 √ √ √ √ √ √ √ √ √ √ √ 水反射层 √ √ √ √ √ √ √ √ √ √ √ 铍组件(活性区外) × √ × √ × √ √ √ √ √ √ 铍组件(活性区内) × × √ √ × × √ √ √ √ √ 铝组件 × × × × √ √ × × √ √ √ Ag-In-Cd控制棒* × × × × × × √ √ √ √ √ 靶件 × × × × × × × √ × × × 孔道(水) × × × × × × × × × √ × 孔道(空气) × × × × × × × × × × √ *—临界状态下堆芯内是否包含Ag-In-Cd控制棒;√—有该类组件;×—无该类组件 表 2 方案7至方案10-2控制棒参考临界棒位
Table 2. Reference Critical Control Rod Positions of Schemes 7 to 10-2
方案号 控制棒组临界棒位/cm A B C D E 方案7 100 0 8.70 100 50 方案8 100 0 44.94 100 50 方案9 100 0 3.43 100 50 方案10-1 100 0 16.14 100 50 方案10-2 100 0 13.07 100 50 表 3 各方案控制棒全插、全提时keff
Table 3. keff of Each Scheme with Control Rods Fully Inserted and Withdrawn
方案号 keff计算值 控制棒
全提控制棒
全插控制棒全提
(计算值偏大时
微调方案)控制棒全提
(计算值偏小时
微调方案)方案1 1.0016 0.9538 0.9986 1.0032 0.9953 1.0058 0.9909 1.0152 方案2 1.0002 0.9579 0.9954 1.0058 方案3 1.0003 0.9670 0.9954 1.0048 0.9904 1.0107 0.9887 1.0158 方案4 1.0031 0.9591 0.9951 1.0051 方案5 1.0000 0.9544 0.9979 1.0027 0.9965 1.0045 0.9879 1.0135 方案6 1.0015 0.9722 0.9976 1.0057 方案7 1.2226 0.8451 — — 方案8 1.1352 0.8026 — — 方案9 1.2137 0.8836 — — 方案10-1 1.1808 0.8684 — — 方案10-2 1.1878 0.8721 — — “—”表示无此项 -
[1] 姚栋,曾道桂,刘静波. CELL程序及其应用[J]. 核动力工程,1996, 17(4): 35-40. [2] 康长虎,刘水清,陈启兵,等. HFETR占栅元铍中孔控制棒物理特性研究[J]. 核动力工程,2021, 42(2): 69-71. [3] 姚磊,夏榜样,卢迪,等. 超临界水冷堆燃料组件及堆芯方案简化设计研究[J]. 核动力工程,2020, 41(4): 45-49. [4] 廖鸿宽,于颖锐,王永明,等. CNP650长燃料循环长短交替运行管理研究[J]. 核动力工程,2020, 41(4): 26-29. [5] 谢仲生. 核反应堆物理分析[M]. 第三版. 北京: 原子能出版社, 1994: 68-71.