Study on the Concept of Organic-Cooled Microreactor
-
摘要: 为了对有机工质冷却核反应堆概念进行研究,本文首先分析了有机工质作为反应堆冷却剂和慢化剂的重要特征和关键技术问题,以及主要有机工质冷却核反应堆技术方案,在此基础上,开展了5 MW微型堆芯中子学特性研究。研究结果表明,在相同堆芯布置条件下,有机工质冷却核反应堆慢化剂温度系数绝对值小于压水堆,功率分布更加平坦。本文研究成果可以为我国正在大力发展的多用途微型核反应堆电源及供热系统技术路线选择提供重要参考。Abstract: In order to study the concept of organic-cooled reactor, this paper firstly analyzes the important characteristics and key technical problems of the organic fluid used as the reactor coolant and moderator, as well as the main technical schemes for organic-cooled reactors. On this basis, this paper studies the neutronic characteristics of the 5 MW microreactor core. As shown in the study, under the same core layout conditions, the absolute value of the moderator temperature coefficient of the organic-cooled reactor is below that of the pressurized water reactor (PWR), and the power distribution is more flat. The study results from this paper can provide an important reference for the determination of the technology roadmap for multi-purpose microreactor power supplies and heating systems, which are rapidly developed in China.
-
Key words:
- Organic fluid /
- Reactor /
- Neutronic characteristics
-
表 1 C12H10的物性参数
Table 1. Physical Properties of C12H10
温度/
℃密度/
(g·cm−3)比热/
[kJ·(kg·℃)−1]热导率/
[W·(m·℃)−1]蒸汽压
力/MPa93 0.9739 0.9769 0.1367 0.0004 149 0.9307 1.0932 0.1315 0.0048 204 0.8842 1.2793 0.1263 0.0290 260 0.8378 1.4189 0.1212 0.1124 316 0.7849 1.5119 0.1160 0.3241 371 0.7272 1.5584 0.1108 0.7585 427 0.6552 1.6049 0.1056 1.5307 482 0.5542 1.6049 0.1004 2.7580 -
[1] 周培德,侯斌,陈晓亮,等. 小型反应堆技术发展趋势[J]. 原子能科学技术,2020, 54(S1): 218-225. [2] 陈炳德. 日本小型核动力反应堆及其技术特点[J]. 核动力工程,2004, 25(3): 193-197, 202. doi: 10.3969/j.issn.0258-0926.2004.03.001 [3] 黄海,徐明. 国外可移动式小型核反应堆动力系统的应用研究[J]. 核动力工程,1995, 16(5): 401-406, 458. [4] 侯斌,吕田,周科源,等. 用于海上钻井平台的小型钠冷快堆核电源概念设计方案[J]. 原子能科学技术,2018, 52(3): 494-501. doi: 10.7538/yzk.2017.youxian.0337 [5] 孙浩,王成龙,刘逍,等. 水下航行器微型核电源堆芯设计[J]. 原子能科学技术,2018, 52(4): 646-651. doi: 10.7538/yzk.2017.youxian.0465 [6] 姚成志,胡古,解家春,等. 月球基地核电源系统方案研究[J]. 原子能科学技术,2016, 50(3): 464-470. doi: 10.7538/yzk.2016.50.03.0464 [7] SHIRVAN K, FORREST E. Design of an organic simplified nuclear reactor[J]. Nuclear Engineering and Technology, 2016, 48(4): 893-905. doi: 10.1016/j.net.2016.02.019 [8] SHANNON C. Conceptual design of an organic-cooled small nuclear reactor to support energy demands in remote locations in northern Canada[D]. Canada: Royal Military College of Canada, 2018 [9] IAEA. Organic liquids as reactor coolants and moderators: technical reports series No.70[R]. Vienna: IAEA, 1967. [10] ELBERG S, FRITZ G. Physical properties of organic nuclear reactor coolants: EUR 400.e[R]. California: European Atomic Energy Community, 1963. [11] JONES R W, CROSTHWAITE J L. Uranium carbide fuel for organic cooled reactors: AECL-4443[R]. Pinawa: Atomic Energy of Canada Limited, 1973. [12] MCCURNIN W R. Evaluate the performance of two OMRE fourth core fuel elements: NAA-SR-9008[R]. USA: Atomics International, 1963. [13] BINSTOCK M H. Fuel element design for Piqua OMR: NAA-SR-5119[R]. USA: Atomics International, 1960 [14] HEWSON R A. Compilation of Piq ua nuclear power facility operating limits and controls and post-critical operational tests: SRDB Ref ID55946[R]. USA: Atomics International, 1965 [15] TSYKANOV V A, CHECHETKIN Y V, KORMUSHKIN Y P, et al. Experimental nuclear heat supply station based on the arbus reactor[J]. Soviet Atomic Energy, 1981, 50(6): 333-338. doi: 10.1007/BF01126338 [16] TEGART D R. Operation of the WR-1 organic cooled research reactor: AECL-3523[R]. Pinawa: Atomic Energy of Canada Limited, 1970. [17] LI W L, WANG K, YU G L. Implementation of online refueling Burnup Calculation in RMC[J]. American Nuclear Society, 2018, 119(1): 1217-1220.