Characteristic Analysis on Distribution of Void Fraction during Stable Flow Flashing Process under Low Pressure
-
摘要: 以低压自然循环系统内产生的闪蒸现象为研究对象,对闪蒸驱动的稳定两相自然循环流动阶段的空泡份额变化规律进行分析,通过分析发现上升段入口流体温度及水箱液位高度都会对流动闪蒸汽化过程的规律产生影响,使得空泡份额径向和轴向分布不一样。通过分析,得出影响汽化过程的主要因素是流体过热度,可知减小上升段入口流体过热度,闪蒸起始点会下移,闪蒸两相段变长;随着闪蒸汽化的不断进行,流体过热度逐渐减小,轴向空泡份额先迅速增加而后逐渐变缓,径向空泡份额分布由“壁峰”型衍变成“核峰”型。然后,然后基于流体当地过热度变化,拟合给出了不同工况下轴向空泡份额计算关系式,与实验数据对比符合较好,相对误差在±15%以内。Abstract: Taking the flashing phenomenon in the low pressure natural circulation system as the research object, the change law of void fraction in the stage of stable two-phase natural circulation flow driven by flashing is analyzed. Through the analysis, the following law is found that the inlet fluid temperature of the rising section and the liquid level height of the water tank will cause the flow to affect the flashing vaporization process, which makes the radial and axial distribution of the void fraction different. Through the analysis, it is concluded that the main factor affecting the vaporization process is the fluid superheat degree. It is known that reducing the fluid degree of subcooling at the inlet of the rising section, the flashing starting point will move down, and the flashing two-phase section will become longer. Along with the continuous flashing vaporization, the fluid degree of subcooling decreases gradually, the axial void fraction distribution increases rapidly first and then gradually slows down, and the radial void fraction changes from “wall peak” type to “nuclear peak” type. Then, based on the change of local fluid degree of subcooling, fitting gives the calculation formula of axial void fraction under different cases. By comparing with the experimental data, it is found that the fitting is good, and the relative error is within ±15%.
-
Key words:
- Low pressure /
- Natural circulation /
- Flashing /
- Void fraction /
- Superheat degree
-
表 1 实验测量参数的不确定度
Table 1. Uncertainty of Parameters Measured in Experiment
测量参数 A类不确定度/% B类不确定度/% 总不确定度/% 温度 0.53~7.22 0.363 0.64~7.23 压力 5.25~15.83 0.283 5.26~15.83 压差 0.12~13.64 0.207 0.24~13.64 体积流量 0.59~6.68 0.205 0.62~6.68 -
[1] 邢继. 华龙一号能动与非能动相结合的先进压水堆核电厂[M]. 北京: 中国原子能出版社, 2016: 21. [2] 宋代勇,赵斌,袁霞,等. “华龙一号”能动与非能动相结合的安全系统设计[J]. 中国核电,2017(4): 468-471. [3] 徐锡斌,徐济鋆,黄海涛,等. 低压下两相自然循环流动不稳定性的实验研究[J]. 核科学与工程,1996, 16(2): 104-113. [4] 郭予飞,苏光辉,喻真烷,等. 低压低含汽率工况下两相自然循环流动不稳定的实验研究[J]. 核科学与工程,1999, 19(2): 137-141. [5] 姜胜耀,张佑,吴莘馨. 自然循环静态流量漂移诱发动态流量振荡研究[J]. 清华大学学报(自然科学版),2000, 40(2): 17-32. [6] JIANG S Y, WU X X, WU S R. Experimental study on flashing concerned Instability in a natural circulation system at nuclear heating reactor conditions[J]. Kerntechnik, 1997, 62(1): 56-62. [7] VAN B, DE K, MANERA A, et al. Analytical modeling of flashing-induced instabilities in a natural circulation cooled boiling water reactor[J]. Nuclear Engineering and Design, 2002(215): 87-98. doi: 10.1016/S0029-5493(02)00043-2 [8] MANERA A, ROHDE U, PRASSER H M, et al. Modeling of flashing-induced instabilities in the start-up phase of natural-circulation BWRs using the two-phase flow code FLOCAL[J]. Nuclear Engineering and Design, 2005(235): 1517-1535. doi: 10.1016/j.nucengdes.2005.01.008 [9] MANERA A. Experimental and analytical investigations on flashing-induced instabilities in natural circulation two-phase systems[D]. Nederland : Delft University of Technology, 2003. [10] FURUYA M, INADA F, VAN D H. Flashing-induced density wave oscillations in a natural circulation BWR-mechanism of instability and stability map[J]. Nuclear Engineering and Design, 2005(235): 1557-1569. doi: 10.1016/j.nucengdes.2005.01.006 [11] MANERA A, PRASSER H M, LUCAS D, et al. Three-dimensional flow pattern visualization and bubble size distributions in stationary and transient upward flashing flow[J]. International Journal of Multiphase Flow, 2006, 32(8): 996-1016. doi: 10.1016/j.ijmultiphaseflow.2006.03.005 [12] 房玉良,曹夏昕,倪嵩,等. 低压自然循环系统流动闪蒸过程流型[J]. 原子能科学技术,2019, 53(11): 2162-2168. [13] 杜可越. 流动闪蒸过程中的汽相分布规律研究[D]. 哈尔滨: 哈尔滨工程大学, 2019: 6.