Experimental Study of Bottom Reflooding in a Narrow Rectangular Channel
-
摘要: 为了解矩形窄缝通道在失水事故(LOCA)下底部再淹没过程中的热工水力特性,在不同实验条件下开展再淹没实验研究。矩形窄缝通道由2块因科镍合金焊接而成,本研究根据温度变化曲线分析底部再淹没过程,计算并对比不同实验工况下的骤冷前沿的推进速度(骤冷速度),以及研究实验参数对再淹没过程的影响。实验结果表明,底部再淹没骤冷速度随着系统压力增大、进口流速增大、初始壁面温度降低以及冷却水过冷度的增大而增大。对比分析底部与联合再淹没工况,结果表明流量相同的情况下,底部再淹没的骤冷速度大于联合再淹没。本文研究为板状燃料元件反应堆事故预防以及事故缓解等研究奠定了基础。Abstract: In order to investigate thermal hydraulic characteristics during bottom reflooding when LOCA occurs in a narrow rectangular channel, the reflooding experiments were carried out under different conditions. The narrow rectangular channel was made by welding two Inconel alloy plates. This study analyzes the bottom reflooding process according to the temperature variation curve, calculates and compares the advancing speed of the quench front (quench speed) under different experimental conditions, and studies the influence of experimental parameters on the reflooding process. Experimental results indicated that quench velocity under bottom reflooding is increasing with increased system pressure, increased inlet velocity, reduced initial wall surface temperature and increase in the degree of subcooling of the coolant. A comparative analysis of the bottom and combined reflooding case indicates that quench velocity under bottom reflooding is higher than that during combined reflooding with the same flow rate. This study lays the foundation for the research of accident prevention and mitigation of plate fuel element reactors.
-
Key words:
- Narrow rectangular channel /
- LOCA /
- Reflooding /
- Quench speed
-
图 4 工况①下TC-3、4、5的测量温度
骤冷温度—再淹没过程中壁面温度开始显著下降的温度;再湿温度—冷却水开始接触壁面的温度[5]
Figure 4. Temperatures of TC-3, 4 and 5 in Case ①
表 1 底部再淹没实验工况
Table 1. Experimental Cases of Bottom Reflooding
工况 加热板壁温/
℃压力/
105Pa进口水温/
℃入口流速/
(cm·s−1)① 613.23 1.01 35.77 5.55 ② 522.44 1.01 33.39 5.86 ③ 645.91 1.01 32.48 2.79 ④ 606.01 1.01 34.81 11.72 ⑤ 629.85 1.01 90.66 5.80 ⑥ 603.88 1.96 51.58 5.63 ⑦ 646.15 4.09 70.89 5.62 表 2 工况①实验开始阶段TC-3、4、5温度转折时间及温度下降速率
Table 2. Temperature Transition Time and Temperature Drop Rate of TC-3, 4 and 5 at the Beginning of Experiment in Case ①
参数 TC-3 TC-4 TC-5 温度转折时间/s 9.67 15.00 24.33 温度下降速率/(℃·s−1) −0.183 −0.078 −0.026 表 3 各工况下的骤冷、再湿速度
Table 3. Quench and Rewetting Speed in All Cases
工况 平均温度/℃ 速度/(mm·s−1) 骤冷 再湿 骤冷 再湿 ① 522.58 361.68 1.97 2.01 ② 464.89 314.81 2.34 2.47 ③ 588.36 345.14 1.44 1.25 ④ 525.45 345.27 3.22 3.08 ⑤ 515.71 321.90 1.33 1.28 ⑥ 499.08 359.95 2.75 2.91 ⑦ 515.15 393.35 3.43 3.55 表 4 联合再淹没工况
Table 4. Combined Reflooding Cases
工况 加热板
壁温/℃进口
水温/℃底部进口流速/
(cm·s−1)顶部进口流速/
(cm·s−1)⑧ 639.47 33.77 3.06 8.66 ⑨ 609.90 34.88 5.76 5.85 ⑩ 607.82 30.72 8.64 3.04 表 5 联合再淹没骤冷、再湿速度
Table 5. Quench, Rewetting Speed of Combined Reflooding
工况 平均温度/℃ 速度/(mm·s−1) 骤冷 再湿 骤冷 再湿 ④ 525.45 345.27 3.22 3.08 ⑧ 556.16 332.46 1.26 1.22 ⑨ 459.00 309.57 1.99 2.14 ⑩ 513.02 342.86 2.73 2.80 -
[1] KIMBALL K D, ROY R P. Quench front propagation during bottom reflooding of a heated annular channel[J]. Nuclear Engineering & Design, 1983, 76(1): 79-88. [2] MURAO, YOSHIO. Analytical study of thermo-hydrodynamic behavior of reflood-phase during LOCA[J]. Journal of Nuclear Science & Technology, 2008, 16(11): 802-817. [3] BARNEA Y, ELIAS E, SHAI I. Flow and heat transfer regimes during quenching of hot surfaces[J]. International Journal of Heat and Mass Transfer, 1994, 37(10): 1441-1453. doi: 10.1016/0017-9310(94)90146-5 [4] CELATA G P, CUMO M, D’ANNIBALE F, et al. Rewetting velocity in quenching at reduced gravity[J]. International Journal of Thermal Sciences, 2010, 49(9): 1567-1575. doi: 10.1016/j.ijthermalsci.2010.04.012 [5] TAKROURI K, LUXAT J, HAMED M. Experimental investigation of quench and re-wetting temperatures of hot horizontal tubes well above the limiting temperature for solid–liquid contact[J]. Nuclear Engineering & Design, 2017, 311(1): 167-183. [6] XU W, DENG Y, LIU X, et al. Mechanism research of two-phase flow regimes during bottom reflooding in narrow rectangular channel[J]. Annals of Nuclear Energy, 2021, 151(3): 107977. [7] XU W, XIA J, LIU X, et al. Experimental investigation of bottom reflooding and modeling of quench velocity in a narrow rectangular channel[J]. Progress in Nuclear Energy, 2018, 105(5): 21-28. [8] 吕崇德. 热工参数测量与处理[M]. 北京: 清华大学出版社, 1990. [9] HOLOWACH M J, HOCHREITER L E, MAHAFFY J H, et al. Modeling of droplet entrainment phenomena at a quench front[J]. International Journal of Heat & Fluid Flow, 2003, 24(6): 902-918. [10] YUAN D W, YAN X, XIONG W Y, et al. Bubble behavior of high subcooling flow boiling at different system pressure in vertical narrow channel[J]. Applied Thermal Engineering, 2011, 31(16): 3512-3520. doi: 10.1016/j.applthermaleng.2011.07.004 [11] CARBAJO J J. Parametric study on rewetting velocities obtained with a two-dimensional heat conduction code[J]. Nuclear Engineering and Design, 1986, 92(1): 69-87. doi: 10.1016/0029-5493(86)90100-7 [12] 王金宇,王均,昝元峰,等. 环形通道内再淹没过程骤冷前沿推进速度实验研究[J]. 核动力工程,2018, 39(4): 63-66.