Dynamic Viscosity Measurement of Helium-Xenon Mixture Gas
-
摘要: 针对氦-氙混合气体热物性参数的研究匮乏问题,对氦-氙混合气体的粘度进行了研究。基于双毛细管法设计实验装置,并考虑了修正项;采用氩气对实验装置进行标定后,测量了2种氦-氙混合气体(15、40 g/mol)在温度298.15~548.15 K、压力0.1~2.5 MPa下的动力粘度,并对测量结果进行了评价;为得到氦-氙混合气体高温下粘度,采用拟合粘度关系式的方法将粘度拟合值外推至温度为1273 K的粘度值。结果表明,本文实验结果与文献值符合较好;实验装置测量合成标准不确定度为3.88%,拟合值与文献值(实验值、计算值)的偏差较小。本研究为空间气冷堆设计和优化提供了基础热物性参数。Abstract: In view of the lack of research on the thermal and physical properties of helium - xenon gas mixture, the viscosity of helium-xenon gas mixture was studied. The experimental apparatus was designed based on the dual capillary method and the correction term was considered. The dynamic viscosities of two kinds of helium-xenon mixtures (15 and 40 g/mol) at temperatures of 298.15~548.15 K and pressures of 0.1~2.5 MPa were measured and evaluated after the calibration of the experimental apparatus with argon gas. In order to obtain the viscosity of He-xenon mixture at high temperature, the viscosity fitting value was extrapolated to 1273 K by using the method of fitting viscosity relation. The results show that the experimental results are in good agreement with the literature values. The standard uncertainty of synthesis measured by the experimental equipment is 3.88%. Compared with the experimental and calculated values in the literature, the deviation between the fitted values and the calculated values is small. This study provides the basic thermal and physical parameters for the design and optimization of space gas cooled reactor.
-
表 1 仪器仪表不确定度
Table 1. Instrument Uncertainty
仪表 压力表 差压计 热电偶 流量计 不确度/% 0.06 0.06~0.1 0.1~0.17 1.75 表 2 混合气体组成
Table 2. Composition of Mixture Gas
氦气摩尔份额/% 氙气摩尔份额/% 混合气体摩尔质量/(g·mol−1) 91.36 8.64 15 71.72 28.28 40 表 3 不确定度评价
Table 3. Assessment of Uncertainties
温度/K 压力/MPa 标准不确定度
(A类)/%合成标准不确定度
(B类)/%298.15 0.5 2.77 2.48 423.15 1.5 3.75 3.88 548.15 2.5 3.08 3.66 -
[1] 李智. 空间反应堆动态能量转换系统特性研究[D]. 北京: 清华大学, 2017. [2] MASON L S. A comparison of Brayton and Stirling space nuclear power systems for power levels from 1 kilowatt to 10 megawatts[J]. AIP Conference Proceedings, 552(1): 1017-1022. [3] TOURNIER J M P, EL-GENK M S. Properties of noble gases and binary mixtures for closed Brayton Cycle applications[J]. Energy Conversion and Management, 2008, 49(3): 469-492. doi: 10.1016/j.enconman.2007.06.050 [4] HAIRE M A, VARGO D D. Review of helium and xenon pure component and mixture transport properties and recommendation of estimating approach for Project Prometheus (viscosity and thermal conductivity)[J]. AIP Conference Proceedings, 2007, 880(1): 559-570. [5] MAY E F, MOLDOVER M R, BERG R F, et al. Transport properties of argon at zero density from viscosity-ratio measurements[J]. Metrologia, 2006, 43(3): 247-258. doi: 10.1088/0026-1394/43/3/007 [6] FENG S, LIU Z H, BI Q C, et al. Viscosity measurements of n-dodecane at temperatures between 303 K and 693 K and pressures up to 10 MPa[J]. Journal of Chemical & Engineering Data, 2018, 63(3): 671-678. [7] LIN H, CHE J, ZHANG J T, et al. Measurements of the viscosities of Kr and Xe by the two-capillary viscometry[J]. Fluid Phase Equilibria, 2016(418): 198-203. doi: 10.1016/j.fluid.2016.01.038 [8] LINSTROM P J, MALLARD W G. The NIST Chemistry WebBook: a chemical data resource on the internet[J]. Journal of Chemical & Engineering Data, 2001, 46(5): 1059-1063. [9] THORNTON E. Viscosity and thermal conductivity of binary gas mixtures: Xenon-Krypton, Xenon-Argon, Xenon-Neon and Xenon-Helium[J]. Proceedings of the Physical Society, 1960, 76(1): 104-112. doi: 10.1088/0370-1328/76/1/313 [10] TRAUTZ M, HEBERLING R. Die reibung, wärmeleitung und diffusion in gasmischungen. xxv. die innere reibung von Xenon und seinen gemischen mit wasserstoff und Helium[J]. Annalen der Physik, 1934, 412(2): 118-120. doi: 10.1002/andp.19344120203 [11] KESTIN J, KHALIFA H E, WAKEHAM W A. The viscosity and diffusion coefficients of the binary mixtures of xenon with the other noble gases[J]. Physica A: Statistical Mechanics and its Applications, 1978, 90(2): 215-228. doi: 10.1016/0378-4371(78)90110-3