高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于卷积神经网络的大尺寸气泡体积二维图像测定方法

胡宁宁 党卓然 张牧昊 唐可 MamoruIshii

胡宁宁, 党卓然, 张牧昊, 唐可, MamoruIshii. 基于卷积神经网络的大尺寸气泡体积二维图像测定方法[J]. 核动力工程, 2021, 42(6): 38-43. doi: 10.13832/j.jnpe.2021.06.0038
引用本文: 胡宁宁, 党卓然, 张牧昊, 唐可, MamoruIshii. 基于卷积神经网络的大尺寸气泡体积二维图像测定方法[J]. 核动力工程, 2021, 42(6): 38-43. doi: 10.13832/j.jnpe.2021.06.0038
Hu Ningning, Dang Zhuoran, Zhang Muhao, Tang Ke, Mamoru Ishii. Measurements of Large Bubble Volume Based on 2-D Images Processing Applying Convolutional Neural Network[J]. Nuclear Power Engineering, 2021, 42(6): 38-43. doi: 10.13832/j.jnpe.2021.06.0038
Citation: Hu Ningning, Dang Zhuoran, Zhang Muhao, Tang Ke, Mamoru Ishii. Measurements of Large Bubble Volume Based on 2-D Images Processing Applying Convolutional Neural Network[J]. Nuclear Power Engineering, 2021, 42(6): 38-43. doi: 10.13832/j.jnpe.2021.06.0038

基于卷积神经网络的大尺寸气泡体积二维图像测定方法

doi: 10.13832/j.jnpe.2021.06.0038
基金项目: 国家建设高水平大学公派研究生项目(201706050102)
详细信息
    作者简介:

    胡宁宁(1990—),女,工程师,现主要从事反应堆运行与检修工作,E-mail: 804075335@qq.com

    通讯作者:

    张牧昊,E-mail: zhangmuhao@cdut.edu.cn

  • 中图分类号: TL33

Measurements of Large Bubble Volume Based on 2-D Images Processing Applying Convolutional Neural Network

  • 摘要: 由于表面张力与惯性力作用,静止流场内较大尺寸气泡[500<气泡雷诺数(Re)<2000]形成不规则几何形状,造成二维图形处理方法等效球体或椭球获取三维体积的方式误差较大。此外,由于不规则界面的散射和反射,引起二维图像处理中边界模糊,难以辨识。本文以高速摄像机获得的静止流场内大尺寸气泡二维灰度图像作为卷积神经网络(CNN)的输入,以图像内气泡二维投影面积及实验获得三维体积训练网络,并用训练好的网络预测气泡体积。实验采用小气泡叠加法获得真实气泡体积,与网络预测结果进行对比。结果表明,该方法与传统图像处理方法相比,不需要对气泡形状进行假设,提高了对大尺寸气泡的适用性。

     

  • 图  1  实验装置示意图

    Figure  1.  Schematic Diagram of Experiemntal Facility

    图  2  图像处理方法流程图

    Figure  2.  Flow Chart of Image Processing Method

    图  3  训练集图像处理示例

    Figure  3.  Examples of Image Processing Applied by Obtaining Training Set

    图  4  CNN结构

    Figure  4.  Structure of CNN

    图  5  网络训练及验证误差

    Figure  5.  Network Training and Verification Error

    图  6  CNN预测气泡投影面积与实验数据的误差

    Figure  6.  Error of Bubble Projected Area between Prediction of CNN and Experimental Data.

    图  7  气泡等效体积直径预测结果与实验数据的相对误差

    Figure  7.  Relative Error of CNN Prediction of Bubble Equivalent Volume Diameter to Experimental Data

  • [1] LUNDE K, PERKINS R J. Shape oscillations of rising bubbles[M]. Dordrecht: Springer, 1998: 387-408.
    [2] CLIFT R, GRACE J R, WEBER M E. Bubbles, drops, and particles[M]. Mineola: Dover Publications, 2005: 340.
    [3] ISHII M. One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes: ANL-77-47[R]. Illinois: Argonne National Lab., 1977.
    [4] TRIPATHI M K, SAHU K C, GOVINDARAJAN R. Dynamics of an initially spherical bubble rising in quiescent liquid[J]. Nature Communications, 2015(6): 6268. doi: 10.1038/ncomms7268
    [5] LAU Y M, DEEN N G, KUIPERS J A M. Development of an image measurement technique for size distribution in dense bubbly flows[J]. Chemical Engineering Science, 2013(94): 20-29. doi: 10.1016/j.ces.2013.02.043
    [6] FU Y C, LIU Y. Development of a robust image processing technique for bubbly flow measurement in a narrow rectangular channel[J]. International Journal of Multiphase Flow, 2016(84): 217-228. doi: 10.1016/j.ijmultiphaseflow.2016.04.011
    [7] TOMIYAMA A, CELATA G P, HOSOKAWA S, et al. Terminal velocity of single bubbles in surface tension force dominant regime[J]. International Journal of Multiphase Flow, 2002, 28(9): 1497-1519. doi: 10.1016/S0301-9322(02)00032-0
    [8] MAJUMDER S K, KUNDU G, MUKHERJEE D. Bubble size distribution and gas–liquid interfacial area in a modified downflow bubble column[J]. Chemical Engineering Journal, 2006, 122(1-2): 1-10. doi: 10.1016/j.cej.2006.04.007
    [9] LI Z C, SONG X M, JIANG S Y, et al. The lateral migration of relative large bubble in simple shear flow in water[J]. Experimental Thermal and Fluid Science, 2016(77): 144-158. doi: 10.1016/j.expthermflusci.2016.04.013
    [10] LEWANDOWSKI B, ULBRICHT M, KREKEL G. An automated image analysing routine for estimation of equivalent diameter in high-speed image sequences with high accuracy and its validation[J]. Experimental Thermal and Fluid Science, 2018(98): 158-169. doi: 10.1016/j.expthermflusci.2018.05.016
    [11] 王红一. 水中气泡图像处理方法及运动特性研究[D]. 天津: 天津大学, 2011.
    [12] CANNY J. A computational approach to edge detection[M]. Los Altos: Morgan Kaufmann, 1987: 203.
    [13] WONG S C, GATT A, STAMATESCU V, et al. Understanding data augmentation for classification: when to warp?[J]. arXiv, 2016, 45(2): 529-534.
    [14] COUVERT A, ROUSTAN M, CHATELLIER P. Two-phase hydrodynamic study of a rectangular air-lift loop reactor with an internal baffle[J]. Chemical Engineering Science, 1999, 54(21): 5245-5252. doi: 10.1016/S0009-2509(99)00246-8
  • 加载中
图(7)
计量
  • 文章访问数:  529
  • HTML全文浏览量:  103
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-10
  • 修回日期:  2020-11-16
  • 刊出日期:  2021-12-09

目录

    /

    返回文章
    返回