高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非对称条件下铅冷双环路自然循环系统抗扰动能力分析

邓声文 朱恩平 赵鹏程 翟鹏迪 刘紫静 余清远

邓声文, 朱恩平, 赵鹏程, 翟鹏迪, 刘紫静, 余清远. 非对称条件下铅冷双环路自然循环系统抗扰动能力分析[J]. 核动力工程, 2021, 42(6): 44-49. doi: 10.13832/j.jnpe.2021.06.0044
引用本文: 邓声文, 朱恩平, 赵鹏程, 翟鹏迪, 刘紫静, 余清远. 非对称条件下铅冷双环路自然循环系统抗扰动能力分析[J]. 核动力工程, 2021, 42(6): 44-49. doi: 10.13832/j.jnpe.2021.06.0044
Deng Shengwen, Zhu Enping, Zhao Pengcheng, Zhai Pengdi, Liu Zijing, Yu Qingyuan. Analysis of Disturbance Resisting Ability of Dual-Loop Natural Circulation System under Asymmetrical Conditions[J]. Nuclear Power Engineering, 2021, 42(6): 44-49. doi: 10.13832/j.jnpe.2021.06.0044
Citation: Deng Shengwen, Zhu Enping, Zhao Pengcheng, Zhai Pengdi, Liu Zijing, Yu Qingyuan. Analysis of Disturbance Resisting Ability of Dual-Loop Natural Circulation System under Asymmetrical Conditions[J]. Nuclear Power Engineering, 2021, 42(6): 44-49. doi: 10.13832/j.jnpe.2021.06.0044

非对称条件下铅冷双环路自然循环系统抗扰动能力分析

doi: 10.13832/j.jnpe.2021.06.0044
基金项目: 国家自然科学基金资助项目(11905101); 湖南省自然科学基金资助项目(2019JJ40239)
详细信息
    作者简介:

    邓声文(1999—),男,硕士研究生,现主要从事反应堆热工水力安全分析研究,E-mail: 2269125187@qq.com

    通讯作者:

    赵鹏程,E-mail: zhaopengcheng1030@163.com

  • 中图分类号: TL329

Analysis of Disturbance Resisting Ability of Dual-Loop Natural Circulation System under Asymmetrical Conditions

  • 摘要: 自然循环铅冷快堆热交换器服役在高温、高压差、高密度和高腐蚀的恶劣环境下,易诱发传热管破裂和堵流事故,导致反应堆非对称热负荷或非对称阻力运行,对反应堆的安全稳定运行具有重要影响。本文以铅冷双环路自然循环系统为研究对象,采用无量纲分析方法,推导双环路系统自然循环流量理论解;分别开展不同负荷差或阻力差下自然循环系统扰动特性分析,采用拟合逼近的方法建立表征自然循环抗扰动能力的特征参数,并获得最佳抗扰动区间。研究结果表明,当系统引入一定的热负荷扰动和阻力扰动后,环路流量变化不大,此时系统抗扰动能力较强。

     

  • 图  1  双环路自然循环简化图

    Figure  1.  Diagram of a Double Loop Natural Circulation System     

    图  2  ${x_1}$k1高斯函数拟合逼近曲线

    Figure  2.  Approximation and Fitting Curve of Gaussian Function about ${x_1}$ and k1     

    图  3  mk1的关系曲线

    Figure  3.  Relationship between m and k1

    图  4  x1k1B的多项式函数拟合逼近曲线

    Figure  4.  Polynomial Function Fitting Approximation Curve of x1, k1 and B

    图  5  x1k1B的拟合多项式函数偏导数曲线

    Figure  5.  Fitting Polynomial Function Partial Derivative Curve of x1, k1 and B

    图  6  mB的关系

    Figure  6.  Relationship between m and B

    表  1  理论和CFD的稳态自然循环流量结果对比分析

    Table  1.   Comparative Analysis of Steady-State Natural Circulation Flow Results of Theory and CFD

    项目理论值/(kg·s−1)CFD值/(kg·s−1)相对误差/%
    左侧环路54.6855.91−2.20
    右侧环路54.6855.98−2.32
    总流量109.36111.89−2.26
    下载: 导出CSV

    表  2  非对称热负荷条件下双环路自然循环系各环路流量计算结果对比分析

    Table  2.   Comparative Analysis of Flow Calculation Results of Each Loop in Dual-loop Natural Circulation System under Asymmetric Heat Load Conditions

    k1理论计算归一化流量CFD计算归一化流量相对误差/%
    0.7${x_{\rm{1}}}{\rm{ = }}0.5828$${x_{\rm{1}}}{\rm{ = 0}}{\rm{.6036}}$−3.45
    ${x_2}{\rm{ = }}0.4072$${x_2}{\rm{ = 0}}{\rm{.3964}}$2.72
    0.6${x_{\rm{1}}}{\rm{ = 0}}{\rm{.5398}}$${x_{\rm{1}}}{\rm{ = 0}}{\rm{.5492}}$−1.71
    ${x_2}{\rm{ = 0}}{\rm{.4602}}$${x_2}{\rm{ = 0}}{\rm{.4508}}$2.08
    0.5${x_{\rm{1}}}{\rm{ = 0}}{\rm{.5000}}$${x_{\rm{1}}}{\rm{ = 0}}{\rm{.4996}}$0.08
    ${x_2}{\rm{ = }}0.5000$${x_2}{\rm{ = }}$0.5004−0.08
    下载: 导出CSV

    表  3  非对称阻力条件下双环路自然循环系各环路流量对比结果

    Table  3.   Comparative Results of Flow of Each Loop in Dual-loop Natural Circulation System under Asymmetric Resistance Conditions

    B理论计算归一化流量CFD计算归一化流量相对误差/%
    0.5${x_{\rm{1}}}{\rm{ = }}0.4401$${x_{\rm{1}}}{\rm{ = }}0.4456$−1.23
    ${x_2}{\rm{ = }}0.5599$${x_2}{\rm{ = }}0.5544$0.99
    1.0${x_{\rm{1}}}{\rm{ = }}0.5000$${x_{\rm{1}}}{\rm{ = }}0.4996$0.08
    ${x_2}{\rm{ = }}0.5000$${x_2}{\rm{ = }}0.5004$−0.08
    2.5${x_{\rm{1}}}{\rm{ = }}0.5842$${x_{\rm{1}}}{\rm{ = }}0.5833$0.15
    ${x_2}{\rm{ = }}0.4158$${x_2}{\rm{ = }}0.4167$−0.22
    下载: 导出CSV
  • [1] LORUSSO P, BASSINI S, DEL NEVO A, et al. GEN-IV LFR development: status & perspectives[J]. Progress in Nuclear Energy, 2018(105): 318-331. doi: 10.1016/j.pnucene.2018.02.005
    [2] WU Y C. Design and R& D progress of China lead-based reactor for ADS research facility[J]. Engineering, 2016, 2(1): 124-131. doi: 10.1016/J.ENG.2016.01.023
    [3] ZHANG Y, WANG C L, LAN Z K, et al. Review of thermal-hydraulic issues and studies of lead-based fast reactors[J]. Renewable and Sustainable Energy Reviews, 2020(120): 109625. doi: 10.1016/j.rser.2019.109625
    [4] 魏诗颖,王成龙,田文喜,等. 铅基快堆关键热工水力问题研究综述[J]. 原子能科学技术,2019, 53(2): 326-336. doi: 10.7538/yzk.2018.youxian.0335
    [5] ROELOFS F. Liquid metal thermal hydraulics: state-of-the-art and future perspectives[J]. Nuclear Engineering and Design, 2020(362): 110590. doi: 10.1016/j.nucengdes.2020.110590
    [6] 孔松,于雷,郝建立,等. 一体化反应堆扰动条件下自然循环特性研究[J]. 核动力工程,2018, 39(4): 53-57.
    [7] VISSER D C, KEIJERS S, LOPES S, et al. CFD analyses of the European scaled pool experiment E-SCAPE[J]. Nuclear Engineering and Design, 2020(358): 110436. doi: 10.1016/j.nucengdes.2019.110436
    [8] TARANTINO M, ROELOFS F, SHAMS A, et al. SESAME project: advancements in liquid metal thermal hydraulics experiments and simulations[J]. EPJ Nuclear Sciences & Technologies, 2020(6): 18.
    [9] MOREAU V, PROFIR M, ALEMBERTI A, et al. Pool CFD modelling: lessons from the SESAME project[J]. Nuclear Engineering and Design, 2019(355): 110343. doi: 10.1016/j.nucengdes.2019.110343
    [10] VAN TICHELEN K, KENNEDY G, MIRELLI F, et al. Advanced liquid-metal thermal-hydraulic research for MYRRHA[J]. Nuclear Technology, 2020, 206(2): 150-163.
    [11] BORTOT S, SUVDANTSETSEG E, WALLENIUS J. BELLA: a multi-point dynamics code for safety-informed design of fast reactors[J]. Annals of Nuclear Energy, 2015(85): 228-235.
    [12] KRÓLIKOWSKI I P, CETNAR J. Neutronic and thermal-hydraulic coupling for 3D reactor core modeling combining MCB and fluent[J]. Nukleonika, 2015, 60(3): 531-536. doi: 10.1515/nuka-2015-0097
    [13] JELTSOV M. Validation and application of CFD to safety-related phenomena in lead-cooled fast reactors[D]. Stockholm, Sweden: Royal Institute of Technology, 2018.
    [14] LIU X J, YANG D M, YANG Y, et al. Computational fluid dynamics and subchannel analysis of lead–bismuth eutectic-cooled fuel assembly under various blockage conditions[J]. Applied Thermal Engineering, 2020(164): 114419. doi: 10.1016/j.applthermaleng.2019.114419
    [15] HAMMAN K D, BERRY R A. A CFD simulation process for fast reactor fuel assemblies[J]. Nuclear Engineering and Design, 2010, 240(9): 2304-2312. doi: 10.1016/j.nucengdes.2009.11.007
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  217
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-29
  • 修回日期:  2021-06-04
  • 刊出日期:  2021-12-09

目录

    /

    返回文章
    返回