Assessment of RELAP5 Code for Predicting Unstable Boundary of Type-I Density Wave with Experiment
-
摘要: 为估算低温核供热堆的第一类密度波不稳定(Type-I DWO)边界,以确定其微沸腾运行模式的参数区间,本文建立了低温核供热堆NHR200相似性实验回路HRTL200的RELAP5数值模型。通过对比模拟结果与实验结果,评价了RELAP5/MOD3.2程序模拟Type-I DWO的一般特性以及预测不稳定边界的能力,分析了进、出口阻力系数、相间摩擦对模拟结果的影响。结果表明,RELAP5程序模拟Type-I DWO 的一般特性与实验符合较好;运行压力不高于25 bar(1 bar=105 Pa)时,程序计算的不稳定边界的过冷度边界值与实验值偏差在3 K以内;运行压力大于30 bar时,采用准确的相间摩擦关系式可以改善预测结果。因此,选取与回路相匹配的相间摩擦关系式后,RELAP5程序可以用于模拟和预测Type-I DWO。Abstract: In order to estimate the unstable (Type-I DWO) boundary of Type-I density wave of low temperature nuclear heating reactor and determine the parameter interval of its slight-boiling mode, the RELAP5 numerical model of NHR200 similarity experimental loop HRTL200 of low temperature nuclear heating reactor is established in this paper. By comparing the simulation results with the experimental results, the general characteristics of RELAP5/MOD3.2 program for simulating Type-I DWO and the ability to predict the unstable boundary are evaluated, and the effects of inlet and outlet resistance coefficients and interphase friction on the simulation results are analyzed. The results show that the general characteristics of Type-I DWO simulated by RELAP5 program are in good agreement with the experiment; When the operating pressure is not higher than 25 bar (1 bar=105Pa), the deviation between the degree of subcooling boundary value of the unstable boundary calculated by the program and the experimental value is within 3 K; when the operating pressure is greater than 30 bar, the accurate interphase friction relationship can improve the prediction results. Therefore, RELAP5 program can be used to simulate and predict Type-I DWO after selecting the interphase friction relationship matching the circuit.
-
Key words:
- Density wave oscillation /
- Slight boiling mode /
- RELAP5 /
- Natural circulation
-
表 1 HRTL200主要设备部件尺寸
Table 1. Dimensions of Main Components of HRTL200
部件名称 内径/mm 外径/mm 长度/mm 上升段 50 57 4990 汽-水分离器 305 325 1446 冷凝器 257 273 2190 换热器 305 325 2715 下降段 100 108 3000~3066 文丘里管 30 — — 加热棒束(3×3) — 10 1900 “—”—无此项 表 2 HRTL200控制体网格无关性检验
Table 2. Grid Independence Test of HRTL200 Control Volume
控制体数 RELAP5计算结果 实验本体 上升段 入口流速/(m·s−1) 相对振幅/% 10 20 0.841 0.02 20 40 0.847 21.41 40 80 0.848 27.23 40 120 0.851 39.14 60 120 0.854 39.13 -
[1] 王大中,马昌文,董铎,等. 自然循环一体化式低温供热堆[J]. 核动力工程,1988, 9(1): 1-5. [2] SINHA R K, KAKODKAR A. Design and development of the AHWR—the Indian thorium fuelled innovative nuclear reactor[J]. Nuclear Engineering and Design, 2006, 236(7-8): 683-700. doi: 10.1016/j.nucengdes.2005.09.026 [3] ISHII M, SHI S B, YANG W S, et al. Novel modular natural circulation BWR design and safety evaluation[J]. Annals of Nuclear Energy, 2015(85): 220-227. doi: 10.1016/j.anucene.2015.05.009 [4] MANGAL A, JAIN V, NAYAK A K. Capability of the RELAP5 code to simulate natural circulation behavior in test facilities[J]. Progress in Nuclear Energy, 2012(61): 1-16. doi: 10.1016/j.pnucene.2012.06.005 [5] RABIEE A, MIRZAEE M M, NEMATOLLAHI M R, et al. Experimental and numerical investigation of natural circulation stability of the SHUNCL thermal-hydraulic loop[J]. Progress in Nuclear Energy, 2016(93): 386-396. doi: 10.1016/j.pnucene.2016.09.011 [6] DE BERTODANO M L, FULLMER W, CLAUSSE A, et al. Two-fluid model stability, simulation and chaos[M]. Cham: Springer, 2017: 225-245. [7] KUMAR P P, KHARDEKAR A, IYER K N. Experimental and numerical investigation on a two-phase natural circulation test facility[J]. Heat Transfer Engineering, 2012, 33(9): 775-785. doi: 10.1080/01457632.2011.640896 [8] 李宗洋,高璞珍,王强,等. 自然循环棒束形通道流动不稳定性起始点研究[J]. 原子能科学技术,2020, 54(2): 242-249. doi: 10.7538/yzk.2019.youxian.0153 [9] 吴少融,贾海军,李怀萱,等. 低压、低干度自然循环系统两相流动特性[J]. 核动力工程,1997, 18(4): 319-324. [10] 刘洋,杨星团,贾海军. 基于脉动比预处理FFT的密度波不稳定性边界研究[J]. 原子能科学技术,2017, 51(12): 2154-2159. doi: 10.7538/yzk.2017.51.12.2154 [11] AMBROSINI W, FERRERI J C. Analysis of basic phenomena in boiling channel instabilities with different flow models and numerical schemes[C]//Proceedings of the 14th International Conference on Nuclear Engineering. Miami, Florida, USA: ASME, 2006: 1-12. [12] 吴少融,贾海军,李怀萱,等. 低压低干度自然循环汽水两相流流量振荡特性[J]. 原子能科学技术,1997, 31(1): 23-27. [13] PRASAD G V D, PANDEY M, KALRA M S. Review of research on flow instabilities in natural circulation boiling systems[J]. Progress in Nuclear Energy, 2007, 49(6): 429-451. doi: 10.1016/j.pnucene.2007.06.002 [14] ZUBER N, FINDLAY J A. Average volumetric concentration in two-phase flow systems[J]. Journal of Heat Transfer, 1965, 87(4): 453-468. doi: 10.1115/1.3689137