高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超临界CO2环境下Fe-22Cr-25Ni奥氏体耐热钢的腐蚀行为研究

郭亭山 梁志远 桂雍 赵钦新

郭亭山, 梁志远, 桂雍, 赵钦新. 超临界CO2环境下Fe-22Cr-25Ni奥氏体耐热钢的腐蚀行为研究[J]. 核动力工程, 2021, 42(6): 93-99. doi: 10.13832/j.jnpe.2021.06.0093
引用本文: 郭亭山, 梁志远, 桂雍, 赵钦新. 超临界CO2环境下Fe-22Cr-25Ni奥氏体耐热钢的腐蚀行为研究[J]. 核动力工程, 2021, 42(6): 93-99. doi: 10.13832/j.jnpe.2021.06.0093
Guo Tingshan, Liang Zhiyuan, Gui Yong, Zhao Qinxin. Corrosion Behavior Study of Fe-22Cr-25Ni Austenitic Heat-Resistant Steel under Supercritical CO2 Condition[J]. Nuclear Power Engineering, 2021, 42(6): 93-99. doi: 10.13832/j.jnpe.2021.06.0093
Citation: Guo Tingshan, Liang Zhiyuan, Gui Yong, Zhao Qinxin. Corrosion Behavior Study of Fe-22Cr-25Ni Austenitic Heat-Resistant Steel under Supercritical CO2 Condition[J]. Nuclear Power Engineering, 2021, 42(6): 93-99. doi: 10.13832/j.jnpe.2021.06.0093

超临界CO2环境下Fe-22Cr-25Ni奥氏体耐热钢的腐蚀行为研究

doi: 10.13832/j.jnpe.2021.06.0093
基金项目: 国家自然科学基金(51808166);中国博士后科学基金 (2020M683474,BX20190269)
详细信息
    作者简介:

    郭亭山(1996—),男,硕士研究生,现主要从事材料环境行为方面的研究,E-mail: 2451809360@qq.com

    通讯作者:

    梁志远,E-mail: liangzy@xjtu.edu.cn

  • 中图分类号: TL341

Corrosion Behavior Study of Fe-22Cr-25Ni Austenitic Heat-Resistant Steel under Supercritical CO2 Condition

  • 摘要: 研究了Fe-22Cr-25Ni奥氏体耐热钢在600℃/700℃、15 MPa超临界CO2环境中的高温腐蚀行为。采用拉曼光谱仪、辉光放电光谱仪、扫描电镜和能谱分析仪对腐蚀产物的成分、含量和元素分布进行表征。实验结果表明:Fe-22Cr-25Ni奥氏体耐热钢在600℃/700℃下的腐蚀动力学符合类抛物线规律,腐蚀增重的变化量随温度的升高而增大;通过观察表征结果和热力学计算得出腐蚀产物成分主要为Cr2O3,从气体侧到基体侧依次为最外侧的是Mn的氧化物、内部的Cr2O3和Mn-Cr氧化物、氧化层/基体界面处的SiO2层,以及基体内的碳化物和内氧化物;C主要沉积于腐蚀产物表面,贫Cr区的宽度和深度随时间的增大而增大。同时根据O元素和C元素的质量比及热力学计算结果,提出C极有可能以离子状态发生内扩散。

     

  • 图  1  超临界CO2环境下Fe-22Cr-25Ni奥氏体耐热钢腐蚀增重曲线

    Figure  1.  Corrosion Mass Gain Curve of Fe-22Cr-25Ni Austenitic Heat-Resistant Steel in Supercritical CO2 Environment

    图  2  600 ℃超临界CO2下腐蚀1000 h后的表面形貌

    Figure  2.  Surface Morphology of Steel after 1000 h of Corrosion in 600 ℃ Supercritical CO2 Environment

    图  3  600℃超临界CO2环境下反应250 h和1000 h时腐蚀产物拉曼分析图谱

    Figure  3.  Raman Analysis of Corrosion Products in 600℃ Supercritical CO2 Environment after 250 h and 1000 h of Reaction

    图  4  600℃超临界CO2环境下反应500 h、1000 h时断面辉光放电光谱结果

    Figure  4.  Glow Discharge Spectroscopy Results of Cross-Sections in 600℃ Supercritical CO2 Environment after 500 h and 1000 h of Reaction

    图  5  600℃超临界CO2环境下反应500 h、1000 h时Cr、C元素沿腐蚀产物方向分布图

    Figure  5.  Distribution Diagram of Cr and C along Direction of Corrosion Products in 600℃ Supercritical CO2 Environment after 500 h and 1000 h of Reaction

    图  6  700℃超临界CO2环境下反应1000 h时断面能谱面扫描结果

    Figure  6.  Surface Scanning Results of Cross-sectional Energy Spectrum at 700 ℃ in Supercritical CO2 Environment after 1000 h of Reaction

    图  7  典型反应的ΔG0-T关系图

    Figure  7.  ΔG0-T Relationship Diagram of Typical Reactions

    表  1  Fe-22Cr-25Ni奥氏体耐热钢的化学成分 %

    Table  1.   Chemical Compositions of Fe-22Cr-25Ni Heat-resistant Steel %

    元素FeCrNiCSiMn
    质量分数Bal21.6525.070.070.170.49
    元素WCuCoNbSP
    质量分数3.853.01.50.50.0010.014
      Bal—列出的成分之外的剩余量
    下载: 导出CSV

    表  2  700℃超临界CO2环境下1000 h后断面点扫描结果 %

    Table  2.   Spot Scanning Results of Cross-section at 700 ℃ in Supercritical CO2 Environment after 1000 h of Reaction(%)

    位置OSiCrMnFeNi
    131.230.0942.981.630.190.00
    222.5516.674.011.3317.7612.65
    30.170.094.960.1742.5827.75
    下载: 导出CSV

    表  3  不同温度下金属氧化反应所需氧分压

    Table  3.   Oxygen Partial Pressure Required for Metal Oxidation Reaction at Different Temperatures

    化学方程式$P_{\rm{O_2}} $(600 ℃)/MPa$P_{\rm{O_2}} $ (700 ℃)/MPa
    Mn+O2=MnO21.97×10−223.05×10−19
    4/3Cr+O2=2/3Cr2O39.36×10−373.77×10−32
    Si+O2=SiO29.48×10−453.51×10−40
    下载: 导出CSV
  • [1] MAHAFFEY J, SCHROEDER A, ADAM D, et al. Effects of CO and O2 impurities on supercritical CO2 corrosion of alloy 625[J]. Metallurgical and Materials Transactions A, 2018, 49(8): 3703-3714. doi: 10.1007/s11661-018-4727-8
    [2] HOLCOMB G R, CARNEY C, DOĞAN ÖN. Oxidation of alloys for energy applications in supercritical CO2 and H2O[J]. Corrosion Science, 2016(109): 22-35. doi: 10.1016/j.corsci.2016.03.018
    [3] 鲁金涛,赵新宝,袁勇,等. 超临界二氧化碳布雷顿循环系统中材料的腐蚀行为[J]. 中国电机工程学报,2016, 36(3): 739-745.
    [4] 梁志远,桂雍,赵钦新. 超临界二氧化碳动力系统耐热材料高温腐蚀研究进展[J]. 装备环境工程,2020, 17(7): 88-93.
    [5] OLEKSAK R P, ROUILLARD F. Materials performance in CO2 and supercritical CO2[J]. Comprehensive Nuclear Materials, 2020(4): 422-451.
    [6] NYGREN K E, YU Z, ROUILLARD F, et al. Effect of sample thickness on the oxidation and carburization kinetics of 9Cr-1Mo steel in high and atmospheric pressure CO2 at 550℃[J]. Corrosion Science, 2020(163): 108292.1-108292.12.
    [7] KIM S H, CHA J H, JANG C. Corrosion and creep behavior of a Ni-base alloy in supercritical-carbon dioxide environment at 650℃[J]. Corrosion Science, 2020(174): 108843.
    [8] BRITTAN A, MAHAFFEY J, ANDERSON M. Corrosion and mechanical performance of grade 92 ferritic-martensitic steel after exposure to supercritical carbon dioxide[J]. Metallurgical and Materials Transactions A, 2020, 51(5): 2564-2572. doi: 10.1007/s11661-020-05691-7
    [9] 刘晓强,梅林波,帅师. 超临界二氧化碳中材料的腐蚀行为[J]. 热力透平,2020, 49(2): 143-147+168.
    [10] FIROUZDOR V, SRIDHARAN K, CAO G, et al. Corrosion of a stainless steel and nickel-based alloys in high temperature supercritical carbon dioxide environment[J]. Corrosion Science, 2013(69): 281-291. doi: 10.1016/j.corsci.2012.11.041
    [11] TAN L, ANDERSON M, TAYLOR D, et al. Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide[J]. Corrosion Science, 2011, 53(10): 3273-3280. doi: 10.1016/j.corsci.2011.06.002
    [12] CAO G, FIROUZDOR V, SRIDHARAN K, et al. Corrosion of austenitic alloys in high temperature supercritical carbon dioxide[J]. Corrosion Science, 2012(60): 246-255. doi: 10.1016/j.corsci.2012.03.029
    [13] ROUILLARD F, FURUKAWA T. Corrosion of 9-12Cr ferritic-martensitic steels in high-temperature CO2[J]. Corrosion Science, 2016(105): 120-132. doi: 10.1016/j.corsci.2016.01.009
    [14] LEE H J, KIM H, KIM S H, et al. Corrosion and carburization behavior of chromia-forming heat resistant alloys in a high-temperature supercritical-carbon dioxide environment[J]. Corrosion Science, 2015(99): 227-239. doi: 10.1016/j.corsci.2015.07.007
    [15] 沈朝. 超临界水冷堆燃料包壳候选材料的腐蚀行为研究[D]. 上海: 上海交通大学, 2015: 38-41.
    [16] 梁志远,桂雍,赵钦新. 超临界二氧化碳条件下3种典型耐热钢腐蚀特性实验研究[J]. 西安交通大学学报,2019, 53(7): 23-29.
    [17] SUBRAMANIAN G O, LEE H J, KIM S H, et al. Corrosion and carburization behaviour of ni-xcr binary alloys in a high-temperature supercritical-carbon dioxide environment[J]. Oxidation of Metals, 2017, 89(5-6): 683-697.
    [18] MAHAFFEY J, ADAM D, BRITTAN A, et al. Corrosion of alloy haynes 230 in high temperature supercritical carbon dioxide with oxygen impurity additions[J]. Oxidation of Metals, 2016, 86(5-6): 567-580. doi: 10.1007/s11085-016-9654-8
    [19] 刘珠,郭相龙,王鹏,等. 310S不锈钢在超临界二氧化碳中的腐蚀行为研究[J]. 核动力工程,2020, 41(S1): 183-187.
    [20] FIROUZDOR V, CAO G P, SRIDHARAN K, et al. Corrosion resistance of PM2000 ODS steel in high temperature supercritical carbon dioxide[J]. Materials and Corrosion, 2015, 66(2): 137-142. doi: 10.1002/maco.201307223
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  97
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-09
  • 修回日期:  2021-04-01
  • 刊出日期:  2021-12-09

目录

    /

    返回文章
    返回