Equipment Design and Research of the HPR1000 In-Containment Refueling Water Storage Tank Strainers Based on Single Variable Solution Method
-
摘要: 为了解决华龙一号(HPR1000)事故后安全壳内置换料水箱(IRWST)过滤器设计中的压降求解问题,本文提出了一种单变量求解IRWST过滤器压降的方法,通过在过滤模块和汇流槽之间增加阻力部件,将IRWST过滤器压降求解中的多组变量转化为阻力部件的流通面积这一单组变量,实现了IRWST过滤器的压降求解。结果表明:采用单变量求解方法,可使每个过滤模块的碎渣量和流量相同,通过对IRWST过滤器的压降值计算,可确定IRWST过滤器的初步过滤面积;通过碎渣压降试验对IRWST过滤器的初步过滤面积进行了验证,其结果满足安全系统的设计要求。
-
关键词:
- 内置换料水箱(IRWST)过滤器 /
- 单变量求解 /
- 模块化设计
Abstract: In order to solve the pressure drop solution problem in the equipment design of HPR1000 In-containment Refueling Water Storage Tank (IRWST) strainers after accident, this paper proposed a method of single variable solution for the pressure drop of IRWST strainers: a resistance element was added between the strainer module and the collector pipe, thus the multiple groups of variables in the IRWST strainers pressure drop solution were converted into the single group of variables (the flow area of resistance elements), and the pressure drop solution of IRWST strainers was performed. The results showed that the debris amount and flowrate on each strainer module can be equal by using the single variable solution method, and the preliminary filtering area can be determined by calculating the pressure drop of IRWST strainers; the preliminary filtering area was verified by the debris pressure drop test, and the results satisfied the design requirements of safety systems. -
表 1 IRWST过滤器的允许压降限值
Table 1. Allowable Pressure Drop Limit of IRWST Strainers
系统 流量/(m3·h−1) 温度/℃ IRWST过滤器允许
压降限值/kPaRSI 1270 100 10 CSP 1050 100 10 表 2 上游碎渣分析结果
Table 2. Analysis Results of Upstream Debris Source
类型 传递至IRWST的碎渣
最大总量(全载荷)碎渣特性 体积/m3 质量/kg 装配密度/(kg·m−3) 微观直径/µm 纤维 22.48 1726.66 76.8 6 颗粒 0.44 1112.62 2528.7 10 表 3 过滤模块的滤网、汇流槽和吸入口水箱的尺寸
Table 3. Dimensions of Filter Screen, Collecting Channel and Suction Tank of Strainer Module
IRWST过滤器部件 沿水流方向的截面积/m2 过滤模块的滤网 0.1375 汇流槽 0.39965 RSI和CSP吸入口水箱 3.4 -
[1] 邢继. 华龙一号能动与非能动相结合的先进压水堆核电厂[M]. 北京: 中国原子能出版社, 2016: 145-156. [2] USNRC. Water sources for long-term recirculation cooling following a loss-of-coolant accident, Regulatory guide 1.82[R]. Washington, DC: USNRC, 2012. [3] 朱明华,张卫,朱京梅,等. 二代改进型核电机组地坑过滤器设计与RG 1.82第4版的相符性[J]. 中国核科学技术进展报告,2015(4): 406-413. [4] USNRC. Pressurized water reactor sump performance evaluation methodology, NEI 04-07[R]. Washington, DC: USNRC, 2004. [5] 张卫,龚钊,朱京梅,等. 秦山核电二期扩建工程安全壳地坑过滤器设计改进及遗留问题分析[J]. 核动力工程,2013, 34(6): 128-131. doi: 10.3969/j.issn.0258-0926.2013.06.030 [6] 王庆礼,李海伦,韩志航,等. CPR1000安全壳地坑滤网上游分析[J]. 核科学与工程,2010(30): 203-210. [7] 李石磊,谢洪虎,何英勇,等. 安全壳地坑过滤器压损数值模拟与试验研究[J]. 核科学与工程,2019, 39(6): 867-871. doi: 10.3969/j.issn.0258-0918.2019.06.001 [8] 张卫. 安全壳地坑过滤器下游效应(堆芯外)分析[J]. 核动力工程,2016, 37(3): 127-130. [9] 刘蔚伟,夏小娇,马韦刚,等. 核电厂安全壳地坑过滤器化学效应试验研究[J]. 核动力工程,2019, 40(5): 124-129. [10] 谢洪虎,李石磊,张峰,等. 核电厂安全壳内置换料水箱过滤系统过滤性能及阻力特性研究[J]. 核动力工程,2019, 40(6): 130-134. [11] USNRC. Parametric study of the potential for BWR ECCS strainer blockage due to LOCA generated debris, NUREG/CR—6224[R]. Washington, DC: USNRC, 1995 [12] IDELCHIK I E. Handbook of hydraulic resistance[M]. 4th ed. Danbury: Begell House, 2008: 192-719.