Study on Helium Leak Detection System for Heat Transfer Tube of Steam Generator in Nuclear Power Plant
-
摘要: 本研究介绍了某核电厂蒸汽发生器传热管在役氦气检漏系统的原理及系统组成,并模拟了某核电厂蒸汽发生器在役大修期间传热管检漏试验。试验结果表明,最佳参数可设置为:蒸汽发生器二次侧氦气浓度份额为30%;抽气速率为 20 L/min;蒸汽发生器二次侧压力为0.6 MPa;系统漏点定位误差在0.5 m以内。本文研究的蒸汽发生器传热管在役氦气检漏系统可为国内核电厂安全、稳定地运行提供可靠的技术保障。Abstract: This study introduces the principle and system composition of the in-service helium leakage detection system of the heat transfer tube of steam generator in a nuclear power plant, and simulates the leakage detection test of the heat transfer tube during the in-service overhaul of the steam generator in a nuclear power plant. The test results show that the optimal parameters can be set as follows: the helium concentration share of the secondary side of the steam generator is 30%; the pumping rate is 20 L/min; the secondary side pressure of the steam generator is 0.6 MPa; the system leaking point location error is within 0.5 m. The helium leakage detection system of heat transfer tube of steam generator studied in this paper can provide reliable technical guarantee for the safe and stable operation of domestic nuclear power plants.
-
表 1 某核电厂蒸汽发生器传热管与模拟体参数比较
Table 1. Comparison Table of Parameters of Steam Generator Heat Transfer Tube and Simulation Body in a Nuclear Power Plant
参数名 某核电厂蒸汽发生器传热管 模拟体 材料 Inconel 690 304 尺寸 Φ16.87 mm×1.09 mm Φ16.87 mm×1.09 mm 直管段长度/mm 9742.75~9620.25 5000 最短管长度/mm 19499.84 15000 表 2 不同抽气速率下系统响应时间
Table 2. System Response Time under Different Pumping Rates
抽气速率/(L·min−1) 20 18 16 12 10 8 响应时间/s 16 18 21 28 33 42 表 3 不同抽气速率下修正后的系统响应时间
Table 3. Revised System Response Time under Different Pumping Rates
抽气速率/(L·min−1) 20 18 16 12 10 8 响应时间/s 26 30 35 45 55 66 表 4 不同氦气浓度下氦气检漏系统读数变化表
Table 4. Reading Changes of Helium Leak Detection System under Different Helium Concentrations
抽气速率/
(L·min−1)蒸汽发生器二次侧氦气浓度份额/% 100 80 50 30 20 泄漏率系统读数/
(10−6 Pa·m3·s−1)Δ/% 泄漏率系统读数/
(10−6 Pa·m3·s−1)Δ/% 泄漏率仪表读数/
(10−6 Pa·m3·s−1)Δ/% 泄漏率系统读数/
(10−6 Pa·m3·s−1)Δ/% 泄漏率仪表读数/
(10−6 Pa·m3·s−1)Δ/% 20 6 20 5.665 13.3 5.625 12.5 5.5 10 5 0 18 6 20 5.835 16.7 5.78 15.6 5.75 15 5 0 表 5 不同蒸汽发生器二次侧压力检漏系统读数变化
Table 5. Reading Changes of Leak Detection System under Different Secondary Side Pressures of Steam Generator
抽气速率/
(L·min−1)蒸汽发生器二次侧压力/MPa 0.5 0.6 0.8 泄漏率系统读数/
(10−6 Pa·m3·s−1)Δ/% 泄漏率仪表读数/
(10−6 Pa·m3·s−1)Δ/% 泄漏率系统读数/
(10−6 Pa·m3·s−1)Δ/% 20 5.1 1.9 5.5 10.0 5.8 16.7 18 5.1 1.9 5.75 15.0 6.3 26.7 表 6 漏点定位精度
Table 6. Locating Precision of Leaking Point
漏孔实际位置/m 0.2 1.4 7.5 13.8 14.8 计算结果/m 0.05 1.1 7.1 14.1 15 误差/m 0.15 0.3 0.4 0.3 0.2 -
[1] 石秀强. 从GALL报告看核电厂中应考虑的腐蚀问题[C]//2009全国电力系统腐蚀控制及检测技术交流会论文集. 长沙: 中国腐蚀与防护学会, 2009: 107-111. [2] 张素军. 分离型循环管式热管蒸汽发生器在硫酸工业中的应用[C]//第31届全国硫酸工业技术交流会论文集. 南宁: 中国化工学会, 全国硫酸工业信息站, 2011: 58-59. [3] 王寿设. 秦山核电站蒸汽发生器的氦质谱检漏技术[J]. 中国核科技报告,1990(S4): 64. [4] 周胜. 氦检漏技术在核电站蒸发器传热管密封性试验中的应用[J]. 核科学与工程,2017, 37(5): 818-821. doi: 10.3969/j.issn.0258-0918.2017.05.017 [5] 张红星, 高建民, 刘军, 等. 蒸汽发生器传热管氦质谱检漏设备漏点定位方法: 中国, CN201610326615.2[P]. 2016-10-26.