高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锆合金原位离子辐照条件下的位错环演化研究

庞华 李奕鹏 吕亮亮 张翔 赵艳丽 张吉斌 彭航 张宏智 孙志鹏 陈杰

庞华, 李奕鹏, 吕亮亮, 张翔, 赵艳丽, 张吉斌, 彭航, 张宏智, 孙志鹏, 陈杰. 锆合金原位离子辐照条件下的位错环演化研究[J]. 核动力工程, 2021, 42(6): 248-253. doi: 10.13832/j.jnpe.2021.06.0248
引用本文: 庞华, 李奕鹏, 吕亮亮, 张翔, 赵艳丽, 张吉斌, 彭航, 张宏智, 孙志鹏, 陈杰. 锆合金原位离子辐照条件下的位错环演化研究[J]. 核动力工程, 2021, 42(6): 248-253. doi: 10.13832/j.jnpe.2021.06.0248
Pang Hua, Li Yipeng, Lyv Liangliang, Zhang Xiang, Zhao Yanli, Zhang Jibin, Peng Hang, Zhang Hongzhi, Sun Zhipeng, Chen Jie. Study on the Evolution of Dislocation Loop under Zirconium Alloy In-Situ Ion Irradiation[J]. Nuclear Power Engineering, 2021, 42(6): 248-253. doi: 10.13832/j.jnpe.2021.06.0248
Citation: Pang Hua, Li Yipeng, Lyv Liangliang, Zhang Xiang, Zhao Yanli, Zhang Jibin, Peng Hang, Zhang Hongzhi, Sun Zhipeng, Chen Jie. Study on the Evolution of Dislocation Loop under Zirconium Alloy In-Situ Ion Irradiation[J]. Nuclear Power Engineering, 2021, 42(6): 248-253. doi: 10.13832/j.jnpe.2021.06.0248

锆合金原位离子辐照条件下的位错环演化研究

doi: 10.13832/j.jnpe.2021.06.0248
详细信息
    作者简介:

    庞 华(1975—),女,研究员级高级工程师,现从事燃料元件设计和研究工作,E-mail: qingwenxiong@foxmail.com

    通讯作者:

    吕亮亮,E-mail: shinesky@126.com

  • 中图分类号: TL341

Study on the Evolution of Dislocation Loop under Zirconium Alloy In-Situ Ion Irradiation

  • 摘要: 位错环演化是核用锆合金辐照组织演化的主要特征之一,对合金辐照后的力学性能(强度、塑性等)有着决定性的影响。目前,锆合金辐照位错环演化的实验研究主要基于离位中子或离子辐照,无法直接观察位错环的演化过程。为了更深入地理解锆合金辐照下的微观组织演化,本工作采用先进的原位离子辐照实验方法,实时观察Zr-2合金位错环的演化过程,揭示不同辐照损伤剂量和温度对演化过程的影响规律,并结合弥散障碍物硬化模型对合金的辐照硬化性能进行了评估,验证了原位离子辐照用于研究锆合金包壳材料辐照后位错环演化和力学性能评价的可行性和先进性。

     

  • 图  1  Zr-2合金在300℃辐照时的<c>型位错环在辐照初期形核和生长的TEM明场像

    Figure  1.  TEM Bright Field Images Showing Nucleation and Growth of <c> Dislocation Loops in Zr-2 Alloy at the Early Stage of Irradiation at 300℃    

    图  2  Zr-2合金在300℃辐照时的<c>型位错环在辐照中后期生长和合并的TEM明场像

    Figure  2.  TEM Bright Field Images Showing the Growth and Coalescence of <c> Dislocation Loops in Zr-2 Alloy at the Late Stage of Irradiation at 300℃

    图  3  300℃辐照下<c>型位错环的平均尺寸和数密度与辐照损伤剂量之间的关系

    Figure  3.  The Relationship between Average Size and Number Density and Irradiation Damage of <c> Dislocation Loops under Irradiation at 300℃

    图  4  不同温度下由位错环导致的硬化随辐照损伤剂量的变化关系    

    Figure  4.  Relationship between Hardening Caused by Dislocation Loops and Irradiation Damage at Different Temperatures

  • [1] 刘建章. 核结构材料[M]. 北京: 化学工业出版社, 2007: 5-6.
    [2] 弗罗斯特B R T. 核材料(第II部分)[M]. 周邦新 译. 北京: 科学出版社, 1999: 6-7.
    [3] GRIFFITHS M. A review of microstructure evolution in zirconium alloys during irradiation[J]. Journal of Nuclear Materials, 1988(159): 190-218. doi: 10.1016/0022-3115(88)90093-1
    [4] NORTHWOOD D O, GILBERT R W, BAHEN L E, et al. Characterization of neutron irradiation damage in zirconium alloys-an international “round-robin” experiment[J]. Journal of Nuclear Materials, 1979, 79(2): 379-394. doi: 10.1016/0022-3115(79)90103-X
    [5] JOSTSONS A, KELLY P M, BLAKE R G, et al. Neutron irradiation-induced defect structures in zirconium[J]. Effects of Radiation on Structural Materials, 1979(683): 46-61.
    [6] HELLIO C, DE NOVION C H, BOULANGER L. Influence of alloying elements on the dislocation loops created by Zr+ ion or by electron irradiation in α-zirconium[J]. Journal of Nuclear Materials, 1988(159): 368-378. doi: 10.1016/0022-3115(88)90103-1
    [7] GAUMÉ M, ONIMUS F, DUPUY L, et al. Microstructure evolution of recrystallized zircaloy-4 under charged particles irradiation[J]. Journal of Nuclear Materials, 2017(495): 516-528. doi: 10.1016/j.jnucmat.2017.09.004
    [8] TOURNADRE L, ONIMUS F, BÉCHADE J, et al. Zirconium in the nuclear industry[C]//West Conshohocken, PA: ASTM International, 2014.
    [9] GHARBI N, ONIMUS F, GILBON D, et al. Impact of an applied stress on c-component loops under Zr ion irradiation in recrystallized zircaloy-4 and M5®[J]. Journal of Nuclear Materials, 2015(467): 785-801. doi: 10.1016/j.jnucmat.2015.10.009
    [10] HOLT R A, GILBERT R W. <c> Component dislocations in annealed Zircaloy irradiated at about 570 K[J]. Journal of Nuclear Materials, 1986, 137(3): 185-189. doi: 10.1016/0022-3115(86)90218-7
    [11] TOURNADRE L, ONIMUS F, BÉCHADE J L, et al. Experimental study of the nucleation and growth of c-component loops under charged particle irradiations of recrystallized zircaloy-4[J]. Journal of Nuclear Materials, 2012, 425(1-3): 76-82. doi: 10.1016/j.jnucmat.2011.11.061
    [12] GRIFFITHS M, LORETTO M H, SMALLMAN R E. Electron damage in zirconium: I. Defect structure and loop character[J]. Journal of Nuclear Materials, 1983, 115(2-3): 313-322. doi: 10.1016/0022-3115(83)90322-7
    [13] YAMADA S, KAMEYAMA T. Observation of c-component dislocation structures formed in pure Zr and Zr-base alloy by self-ion accelerator irradiation[J]. Journal of Nuclear Materials, 2012, 422(1-3): 167-172. doi: 10.1016/j.jnucmat.2011.12.035
    [14] MAKIN M J, SHARP J V. A model of “lattice” hardening in irradiated copper crystals with the external characteristics of “source” hardening[J]. Physica Status Solidi B, 1965, 9(1): 109-118. doi: 10.1002/pssb.19650090114
    [15] CHAI L J, LUAN B F, XIAO D P, et al. Microstructural and textural evolution of commercially pure Zr sheet rolled at room and liquid nitrogen temperatures[J]. Materials & Design, 2015(85): 296-308.
    [16] BUSBY J T, HASH M C, WAS G S. The relationship between hardness and yield stress in irradiated austenitic and ferritic steels[J]. Journal of Nuclear Materials, 2005, 336(2-3): 267-278. doi: 10.1016/j.jnucmat.2004.09.024
  • 加载中
图(4)
计量
  • 文章访问数:  376
  • HTML全文浏览量:  57
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-12
  • 修回日期:  2021-08-18
  • 刊出日期:  2021-12-09

目录

    /

    返回文章
    返回