高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

U-10Mo/Zr单片式燃料元件堆内稳态热-力学性能研究

郭子萱 简晓彬 李文杰 张坤 王鹏 王严培

郭子萱, 简晓彬, 李文杰, 张坤, 王鹏, 王严培. U-10Mo/Zr单片式燃料元件堆内稳态热-力学性能研究[J]. 核动力工程, 2021, 42(6): 254-260. doi: 10.13832/j.jnpe.2021.06.0254
引用本文: 郭子萱, 简晓彬, 李文杰, 张坤, 王鹏, 王严培. U-10Mo/Zr单片式燃料元件堆内稳态热-力学性能研究[J]. 核动力工程, 2021, 42(6): 254-260. doi: 10.13832/j.jnpe.2021.06.0254
Guo Zixuan, Jian Xiaobin, Li Wenjie, Zhang Kun, Wang Peng, Wang Yanpei. Research on In-Pile Thermo-Mechanical Performance for U-10Mo/Zr Monolithic Fuel Element under Steady Condition[J]. Nuclear Power Engineering, 2021, 42(6): 254-260. doi: 10.13832/j.jnpe.2021.06.0254
Citation: Guo Zixuan, Jian Xiaobin, Li Wenjie, Zhang Kun, Wang Peng, Wang Yanpei. Research on In-Pile Thermo-Mechanical Performance for U-10Mo/Zr Monolithic Fuel Element under Steady Condition[J]. Nuclear Power Engineering, 2021, 42(6): 254-260. doi: 10.13832/j.jnpe.2021.06.0254

U-10Mo/Zr单片式燃料元件堆内稳态热-力学性能研究

doi: 10.13832/j.jnpe.2021.06.0254
详细信息
    作者简介:

    郭子萱(1990—),男,工程师,现主要从事燃料元件设计工作,E-mail: guozixuan_90@126.com

  • 中图分类号: TL352.1

Research on In-Pile Thermo-Mechanical Performance for U-10Mo/Zr Monolithic Fuel Element under Steady Condition

  • 摘要: 本文建立了U-10Mo/Zr单片式燃料元件的辐照性能模型以及热-力学本构关系,采用有限元方法进行非均匀辐照场中燃料元件稳态热-力学性能的数值模拟,获得并分析了U-10Mo/Zr单片式燃料元件温度、形变和应力的分布特点及变化规律。研究结果表明,燃料芯体厚度增量在芯体和包壳结合面附近达到最大,主要受到燃料辐照蠕变的影响;在较低燃耗条件下,燃料芯体高温辐照肿胀模拟结果与低温辐照肿胀试验结果相当;燃料芯体边角区域和包壳端面外侧区域存在应力集中。

     

  • 图  1  燃料元件的1/4模型

    Figure  1.  1/4 Model of Fuel Element

    图  2  f和冷却剂温度的轴向分布

    Figure  2.  Axial Distributions of f and Coolant Temperature

    图  3  稳态运行80 d后燃料元件温度分布

    Figure  3.  Temperature Distribution of Fuel Element after 80 d of Steady-State Operation

    图  4  燃料芯体在Z轴方向位移随运行时间分布

    Figure  4.  Distribution of Displacement of Fuel Pallet along Z Axis with Running Time

    图  5  稳态运行80 d后燃料芯体应变量分布

    Figure  5.  Strain Distribution of Fuel Pallet after 80 d of Steady-state Operation

    图  6  稳态运行80 d后燃料芯体ΔV/V分布

    Figure  6.  ΔV/V Distribution of Fuel Pallet after 80 d of Steady-state Operation

    图  7  不同时刻燃料芯体最大ΔV/V值分布

    Figure  7.  Maximum ΔV/V Distribution of Fuel Pallet at Different Times

    图  8  稳态运行80 d后燃料芯体边角附近包壳的Mises应力云图     

    Figure  8.  Mises Stress Contour of Cladding around the Corner Area of the Fuel Pellet after 80 d of Steady-state Operation

    图  9  稳态运行80 d后燃料芯体Mises应力云图

    Figure  9.  Mises Stress Contour of Fuel Pellet after 80 d of Steady-State Operation

    表  1  燃料元件尺寸

    Table  1.   Size of Fuel Element

    结构长度/mm宽度/mm厚度/mm
    燃料元件420.070.01.5
    燃料芯体400.064.00.9
    下载: 导出CSV
  • [1] CRAWFORD D C, HAYES S L, POWERS J J. VTR startup fuel paper for NFSM: INL/EXT-18-44673-Rev000[R]. Idaho: Idaho National Laboratory, 2018.
    [2] DRAGUNOV Y G, TRETIYAKOV I T, LOPATKIN A V, et al. MBIR multipurpose fast reactor – Innovative tool for the development of nuclear power technologies[J]. Atomic Energy, 2012, 113(1): 24-28. doi: 10.1007/s10512-012-9590-x
    [3] KIM Y S, HOFMAN G L, CHEON J S, et al. Fission induced swelling and creep of U-Mo alloy fuel[J]. Journal of Nuclear Materials, 2013, 437(1-3): 37-46. doi: 10.1016/j.jnucmat.2013.01.346
    [4] SHOUDY A A, MCHUGH W E, SILLIMAN M A. The effect of irradiation temperature and fission rate on the radiation stability of uranium-10 wt% molybdenum alloy[C]//Proceedings of Radiation Damage in Reactor Materials. Vienna: IAEA, 1963.
    [5] LÓPEZ M, PICCHETTI B, TABOADA H. Influence of temperature and compressive stress on the UMo/Zry-4 interdiffusion layer[J]. Progress in Nuclear Energy, 2017(94): 101-105. doi: 10.1016/j.pnucene.2016.10.006
    [6] MILLER G K, BURKES D E, WACHS D M. Modeling thermal and stress behavior of the fuel-clad interface in monolithic fuel mini-plates[J]. Materials & Design, 2010, 31(7): 3234-3243.
    [7] YUN D, HOFMAN G L, KIM Y S, et al. Finite element modeling of irradiation induced swelling and creep in metallic mini-plate fuel - A preliminary study[J]. Transactions of the American Nuclear Society, 2011(105): 407-408.
    [8] ZHAO Y M, GONG X, DING S R. Simulation of the irradiation-induced thermo-mechanical behaviors evolution in monolithic U-Mo/Zr fuel plates under a heterogeneous irradiation condition[J]. Nuclear Engineering and Design, 2015(285): 85-97.
    [9] 殷明阳,庞华,唐昌兵,等. UMo-Zr单片式燃料板结构改进研究[J]. 核动力工程,2019, 40(4): 172-176.
    [10] 孔祥喆,丁淑蓉,田旭. UMo/Zr单片式燃料板堆内热力耦合行为研究[J]. 核动力工程,2018, 39(2): 109-113.
    [11] CUI Y, DING S R, CHEN Z T, et al. Modifications and applications of the mechanistic gaseous swelling model for UMo fuel[J]. Journal of Nuclear Materials, 2015(457): 157-164. doi: 10.1016/j.jnucmat.2014.11.065
    [12] WILLARD R M, SCHMITT A R. Irradiation swelling, phase reversion, and intergranular cracking of U-10wt. % Mo fuel alloy: NAA-SR-8956[R]. California: Atomics International, 1964.
    [13] BLEIBERG M L. Effect of fission rate and lamella spacing upon the irradiation-induced phase transformation of U-9wt% Mo alloy[J]. Journal of Nuclear Materials, 1959, 1(2): 182-190. doi: 10.1016/0022-3115(59)90051-0
    [14] KIM Y S, HOFMAN G L. Fission product induced swelling of U-Mo alloy fuel[J]. Journal of Nuclear Materials, 2011, 419(1-3): 291-301. doi: 10.1016/j.jnucmat.2011.08.018
    [15] YAN F, JIAN X B, DING S R. Effects of UMo irradiation creep on the thermo-mechanical behavior in monolithic UMo/Al fuel plates[J]. Journal of Nuclear Materials, 2019(524): 209-217. doi: 10.1016/j.jnucmat.2019.07.006
    [16] FISHER F E, RENKEN J C. Single-crystal elastic moduli and the Hcp→bcc transformation in Ti, Zr, and Hf[J]. Physical Review A, 1964, 135(2A): A482-A494. doi: 10.1103/PhysRev.135.A482
    [17] HAGRMAN D L, REYMAN G A. MATPRO-Version 11: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior: NUREG/CR-0497[R]. Idaho: Idaho National Engineering Laboratory, 1979.
    [18] HALES J D, WILLIAMSON R L, NOVASCONE S R, et al. BISON theory manual the equations behind nuclear fuel analysis: INL/EXT-13-29930[R]. Idaho: Idaho National Laboratory, 2016.
    [19] JAEGER W. Heat transfer to liquid metals with empirical models for turbulent forced convection in various geometries[J]. Nuclear Engineering and Design, 2017(319): 12-27. doi: 10.1016/j.nucengdes.2017.04.028
    [20] REST J, KIM Y S, HOFMAN G L, et al. U-Mo Fuels Handbook: ANL-09/31[R]. Argonne: Argonne National Laboratory, 2006.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  291
  • HTML全文浏览量:  108
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-14
  • 修回日期:  2021-08-26
  • 刊出日期:  2021-12-09

目录

    /

    返回文章
    返回