高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

综合棒束CHF机理模型开发与验证

刘伟 彭诗念 江光明 刘余

刘伟, 彭诗念, 江光明, 刘余. 综合棒束CHF机理模型开发与验证[J]. 核动力工程, 2021, 42(S2): 77-81. doi: 10.13832/j.jnpe.2021.S2.0077
引用本文: 刘伟, 彭诗念, 江光明, 刘余. 综合棒束CHF机理模型开发与验证[J]. 核动力工程, 2021, 42(S2): 77-81. doi: 10.13832/j.jnpe.2021.S2.0077
Liu Wei, Peng Shinian, Jiang Guangming, Liu Yu. Development and Verification of a Comprehensive Rod Bundle CHF Mechanism Model[J]. Nuclear Power Engineering, 2021, 42(S2): 77-81. doi: 10.13832/j.jnpe.2021.S2.0077
Citation: Liu Wei, Peng Shinian, Jiang Guangming, Liu Yu. Development and Verification of a Comprehensive Rod Bundle CHF Mechanism Model[J]. Nuclear Power Engineering, 2021, 42(S2): 77-81. doi: 10.13832/j.jnpe.2021.S2.0077

综合棒束CHF机理模型开发与验证

doi: 10.13832/j.jnpe.2021.S2.0077
详细信息
    作者简介:

    刘 伟(1989—),男,博士,主要从事反应堆热工水力与安全分析研究,E-mail: liuwei0958@126.com

  • 中图分类号: TL334

Development and Verification of a Comprehensive Rod Bundle CHF Mechanism Model

  • 摘要: 为了实现棒束通道中宽参数范围下偏离泡核沸腾(DNB)型和干涸(DO)型临界热流密度(CHF)的连续准确预测,采用棒束通道中的CHF分类准则和气泡湍流脉动下的过热液体层蒸干DNB型CHF机理模型,结合已经研究成熟的DO型CHF机理模型,建立了覆盖不同类型CHF的综合棒束CHF机理模型。采用中国核动力研究设计院(NPIC)的5×5全长棒束CHF实验数据对所建立的综合棒束CHF机理模型进行了验证,结果表明,综合棒束CHF机理模型所有的预测值/测量值(P/M)数据均匀地分布在1附近,最大相对偏差在±22%之内,说明开发的综合棒束CHF机理模型能够实现对棒束通道DNB型和DO型CHF的连续准确预测。

     

  • 图  1  棒束CHF定量分类判定图

    Figure  1.  Quantitative Classification Criterion of Rod Bundle CHF      

    图  2  DNB型CHF示意图

    m—进入控制体的质量流量;$ \Delta {m_{{\text{evap}}}} $—蒸发的质量流量;$ {m_{{\text{turb}}}} $为湍流交混质量流量;T (y)—温度分布函数;D—通道等效直径;${{\Delta }}m$—质量流量的增量; ${{\Delta }}\textit{z}$—控制体高度

    Figure  2.  Schematic Diagram of DNB Type CHF

    图  3  过热液体层厚度示意图

    Tw—壁面温度;Tsat—液体饱和温度

    Figure  3.  Schematic Diagram of Superheated Liquid Layer Thickness

    图  4  DO型CHF示意图

    Figure  4.  Schematic Diagram of DO Type CHF

    图  5  综合棒束CHF模型计算流程

    Figure  5.  Calculation Flow Chart of Comprehensive Rod Bundle CHF Model      

    图  6  TEST1、TEST5和TEST2系列P/M数据分布

    Figure  6.  Distribution of P/M Data in TEST1, TEST5 and TEST2      

    图  7  TEST8系列P/M数据分布

    Figure  7.  Distribution of P/M Data in TEST8

    图  8  TEST7系列P/M数据分布

    Figure  8.  Distribution of P/M Data in TEST7

    表  1  各组数据及其特征

    Table  1.   Each Group of Data and Its Characteristics

    实验系列栅元类型轴向功率分布格架布置类型
    TEST1典型均匀半跨
    TEST2典型均匀半跨
    TEST5典型均匀半跨
    TEST7导向管均匀全跨
    TEST8典型均匀全跨
    下载: 导出CSV
  • [1] TONG L S. Heat transfer in water-cooled nuclear reactors[J]. Nuclear Engineering and Design, 1967, 6(4): 301-324. doi: 10.1016/0029-5493(67)90111-2
    [2] YANG B W, HAN B, LIU A G, et al. Recent challenges in subchannel thermal-hydraulics-CFD modeling, subchannel analysis, CHF experiments, and CHF prediction[J]. Nuclear engineering and design, 2019, 354: 110236. doi: 10.1016/j.nucengdes.2019.110236
    [3] GROENEVELD D C, IRELAND A, KAIZER J, et al. An overview of measurements, data compilations and prediction methods for the critical heat flux in water-cooled tubes[J]. Nuclear Engineering and Design, 2018, 331: 211-221. doi: 10.1016/j.nucengdes.2018.02.031
    [4] LIU Y, LIU W, SHAN J Q, et al. A mechanistic bubble crowding model for predicting critical heat flux in subchannels of a bundle[J]. Annals of Nuclear Energy, 2020, 137: 107085. doi: 10.1016/j.anucene.2019.107085
    [5] ZHANG H B, HEWITT G F. New models of droplet deposition and entrainment for prediction of CHF in cylindrical rod bundles[J]. Nuclear engineering and design, 2016, 305: 73-80. doi: 10.1016/j.nucengdes.2016.04.044
    [6] LIU W, PENG S N, JIANG G M, et al. Analytical investigation on rod bundle CHF-regime criterion based on dimensionless groups[J]. International Journal of Thermal Sciences, 2021, 159: 106571. doi: 10.1016/j.ijthermalsci.2020.106571
    [7] LIU W, PENG S N, JIANG G M, et al. Development and assessment of a new CHF mechanistic model for subcooled and low quality flow boiling[J]. International Journal of Heat and Mass Transfer, 2021, 165: 120641. doi: 10.1016/j.ijheatmasstransfer.2020.120641
    [8] LIU W, PENG S N, SHAN J Q, et al. Applicability research of round tube CHF mechanistic model in rod bundle channel[J]. Nuclear Engineering and Technology, 2021, 53(2): 439-445. doi: 10.1016/j.net.2020.07.023
    [9] CHANG S H, BANG I C, BAEK W P. A photographic study on the near-wall bubble behavior in subcooled flow boiling[J]. International Journal of Thermal Sciences, 2002, 41(7): 609-618. doi: 10.1016/S1290-0729(02)01354-6
    [10] GROENEVELD D. The critical heat flux story[C]//The 15th International Topical Meeting on Nuclear Reactor Thermal Hydraulics. Pisa, Italy, 2013.
    [11] LIM J C, WEISMAN J. A phenomenologically based prediction of rod-bundle dryout[J]. Nuclear Engineering and Design, 1988, 105(3): 363-371. doi: 10.1016/0029-5493(88)90256-7
    [12] 秦胜杰,郎雪梅,谢士杰,等. 压水堆燃料组件临界热流密度验证实验[J]. 核动力工程,2016, 37(5): 1-3.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  269
  • HTML全文浏览量:  100
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 录用日期:  2021-12-06
  • 修回日期:  2021-10-26
  • 刊出日期:  2021-12-29

目录

    /

    返回文章
    返回