高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于B&W临界实验基准题的先进中子学组件程序KYLIN V2.0的验证与确认

赵晨 彭星杰 张斌 柴晓明 李庆

赵晨, 彭星杰, 张斌, 柴晓明, 李庆. 基于B&W临界实验基准题的先进中子学组件程序KYLIN V2.0的验证与确认[J]. 核动力工程, 2021, 42(S2): 113-118. doi: 10.13832/j.jnpe.2021.S2.0113
引用本文: 赵晨, 彭星杰, 张斌, 柴晓明, 李庆. 基于B&W临界实验基准题的先进中子学组件程序KYLIN V2.0的验证与确认[J]. 核动力工程, 2021, 42(S2): 113-118. doi: 10.13832/j.jnpe.2021.S2.0113
Zhao Chen, Peng Xingjie, Zhang Bin, Chai Xiaoming, Li Qing. Verification and Validation of the Advanced Neutronics Component Program KYLIN V2.0 Based on B&W Critical Experiment Benchmark Task[J]. Nuclear Power Engineering, 2021, 42(S2): 113-118. doi: 10.13832/j.jnpe.2021.S2.0113
Citation: Zhao Chen, Peng Xingjie, Zhang Bin, Chai Xiaoming, Li Qing. Verification and Validation of the Advanced Neutronics Component Program KYLIN V2.0 Based on B&W Critical Experiment Benchmark Task[J]. Nuclear Power Engineering, 2021, 42(S2): 113-118. doi: 10.13832/j.jnpe.2021.S2.0113

基于B&W临界实验基准题的先进中子学组件程序KYLIN V2.0的验证与确认

doi: 10.13832/j.jnpe.2021.S2.0113
基金项目: 国家自然科学基金 (12005214;11905214)
详细信息
    作者简介:

    赵 晨(1992—),男,工程师,现主要从事反应堆物理研究工作,E-mail: okzhaochen@163.com

  • 中图分类号: TL329.2

Verification and Validation of the Advanced Neutronics Component Program KYLIN V2.0 Based on B&W Critical Experiment Benchmark Task

  • 摘要: KYLIN V2.0是中国核动力研究设计院自主研发的先进中子学组件程序,程序分别采用子群共振方法、特征线方法、切比雪夫有理近似方法进行共振、输运、燃耗计算,从而提供多群截面库。本文采用B&W临界实验基准题对于KYLIN V2.0程序进行验证确认,包括了B&W1484临界基准题21个算例、B&W1810临界基准题23个算例等。计算结果表明,KYLIN V2.0程序计算结果与测量数据吻合较好,验证了KYLIN V2.0程序具有较好计算精度与非均匀计算能力。

     

  • 图  1  KYLIN V2.0程序计算流程

    Figure  1.  Calculation Process KYLIN V2.0 code

    图  2  B&W1484临界实验基准题栅元结构

    Figure  2.  Cell Structure of B&W1484 Critical Experiment Benchmark Task

    图  3  B&W1484临界实验基准题堆芯结构

    Figure  3.  Core Structure of B&W1484 Critical Experiment Benchmark Task

    图  4  B&W1810临界实验基准题栅元结构

    Figure  4.  Cell Structurre of B&W1810 Critical Experiment Benchmark Task 

    图  5  B&W1810临界实验基准题堆芯结构

    Figure  5.  Core Structure of B&W1810 Critical Experiment Benchmark Task

    图  6  B&W1810临界实验基准题内燃料区域结构示意图

    Figure  6.  Schematic Diagram of Internal Fuel Area Structure of B&W1810 Critical Experiment Benchmark Task

    图  7  B&W1810算例1裂变率计算结果与测量值对比

    “—”—无数据

    Figure  7.  Computed and Measured Results of Fission Rate of B&W1810 Example 1

    图  8  B&W1810算例5裂变率计算结果与测量值对比

    “—”—无数据

    Figure  8.  Computed and Measured Results of Fission Rate of B&W1810 Example 5

    表  1  B&W1484临界实验基准题特征值计算结果

    Table  1.   Eigenvalue Results of B&W1484 Critical Experiment Benchmark Task 

    算例结果偏差/10−5算例结果偏差/10−5
    1 0.99879 −121 12 0.99949 −51
    2 1.00033 33 13 1.00002 2
    3 0.99908 −92 14 1.00016 16
    4 1.00039 39 15 0.99952 −48
    5 1.00011 11 16 0.99955 −45
    6 1.00029 29 17 0.99861 −139
    7 0.99875 −125 18 0.99911 −89
    8 1.00053 53 19 0.99893 −107
    9 1.00004 4 20 0.99875 −125
    10 1.00119 119 21 0.99833 −167
    11 1.00048 48
      “—”—无数据
    下载: 导出CSV

    表  2  B&W1810临界实验基准题特征值计算结果

    Table  2.   Eigenvalue Results of B&W1810 Critical Experiment Benchmark Task   

    算例结果偏差/10−5算例结果偏差/10−5
    1 1.00017 17 9 0.99796 −204
    2 0.99772 −218 10 0.99785 −215
    3 1.00065 65 12 1.00047 47
    4 0.99937 −63 13 0.99825 −175
    5 0.99978 −22 14 1.00022 22
    5A 0.99793 −207 15 0.99822 −178
    5B 0.99753 −247 16 0.99820 −180
    6 0.99845 −155 17 0.99840 −160
    6A 0.99838 −162 18 1.00025 25
    7 0.99787 −213 19 0.99841 −159
    8 0.99790 −210 20 1.00047 47
    下载: 导出CSV
  • [1] 谢仲生. 核反应堆物理分析[M]. 西安: 西安交通大学出版社, 2004: 139-164.
    [2] 谢仲生. 压水堆核电厂堆芯燃料管理计算及优化[M]. 北京: 中国原子能出版社, 2001: 21-47.
    [3] 柴晓明,涂晓兰,郭凤晨,等. 先进中子学栅格程序KYLIN-2的开发与初步验证[J]. 强激光与粒子束,2017, 27(1): 016016. doi: 10.11884/HPLPB201729.160306
    [4] WANG D Y, PENG X J, YU Y R, et al. Description and verification of KYLIN-V2.0 lattice physics code[J]. Nuclear Engineering and Design, 2021, 379: 111132.
    [5] WEMPLE C A, GHEORGHIU H N M, STAMM’LER R J J, et al. Recent advances in the HELIOS-2 lattice physics code[C]//International Conference on the Physics of Reactors. Interlaken, Switzerland: Casino-Kursaal Conference Center, 2008.
    [6] CHOI S, KHASSENOV A, LEE D. Resonance self-shielding method using resonance interference factor library for practical lattice physics computations of LWRs[J]. Journal of Nuclear Science and Technology, 2015, 53(8): 1142-1154.
    [7] PENG S T, JIANG X F, ZHANG S H, et al. Subgroup method with resonance interference factor table[J]. Annals of Nuclear Energy, 2013, 59: 176-187. doi: 10.1016/j.anucene.2013.04.005
    [8] GAO Z J, XU Y L, DOWNAR T J. The treatment of resonance interference effects in the subgroup method[J]. Annals of Nuclear Energy, 2011, 38(5): 995-1003. doi: 10.1016/j.anucene.2011.01.019
    [9] ASKEW J. A characteristics formulation of the neutron transport equation in complicated geometries: AEEW-M 1108[R]. Winfrith: United Kingdom Atomic Energy Establishment, 1972.
    [10] LIANG L, WU H C, CAO L Z, et al. Development of a two-dimensional modularity characteristics code for neutron transport calculation[C]//2013 21st International Conference on Nuclear Engineering. Chengdu, China: ASME, 2013.
    [11] ZHAO C, LIU Z Y, LIANG L, et al. Improved leakage splitting method for the 2D/1D transport calculation[J]. Progress in Nuclear Energy, 2018, 105: 202-210. doi: 10.1016/j.pnucene.2018.01.007
    [12] WANG D A, XIAO S C. A linear prolongation approach to stabilizing CMFD[J]. Nuclear Science and Engineering, 2018, 190: 45-55. doi: 10.1080/00295639.2017.1417347
    [13] RAHNEMA F, NICHITA E M. Leakage corrected spatial (assembly) homogenization technique[J]. Annals of Nuclear Energy, 1997, 24(6): 477-488. doi: 10.1016/S0306-4549(96)00084-9
    [14] PETROVIC I, BENOIST P, MARLEAU G. A quasi-isotropic reflecting boundary condition for the TIBERE heterogeneous leakage model[J]. Nuclear Science and Engineering, 1996, 122(2): 151-166. doi: 10.13182/NSE96-A24152
    [15] PUSA M, LEPPÄNEN J. Computing the matrix exponential in burnup calculations[J]. Nuclear Science and Engineering, 2010, 164(2): 140-150. doi: 10.13182/NSE09-14
    [16] NEWMAN L W. “Urania-Gadolinia”: Nuclear model development and critical experiment benchmark: DOE/ET/34212-41[R]. Lynchburg, VA, USA: Babcock & Wilcox, 1984.
    [17] BALDWIN M N, HOOVLER G S. Critical experiments supporting close proximity water storage of power reactor fuel: BAW-1484-6[R]. Lynchburg, USA: Babcock & Wilcox Company, 1979.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  271
  • HTML全文浏览量:  56
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 录用日期:  2021-12-07
  • 修回日期:  2021-09-12
  • 刊出日期:  2021-12-29

目录

    /

    返回文章
    返回