高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FeCrAl-UN燃料棒性能模拟分析

涂腾 高士鑫 周毅 陈平 张瑞谦 杨青峰 廖楠

涂腾, 高士鑫, 周毅, 陈平, 张瑞谦, 杨青峰, 廖楠. FeCrAl-UN燃料棒性能模拟分析[J]. 核动力工程, 2021, 42(S2): 165-170. doi: 10.13832/j.jnpe.2021.S2.0165
引用本文: 涂腾, 高士鑫, 周毅, 陈平, 张瑞谦, 杨青峰, 廖楠. FeCrAl-UN燃料棒性能模拟分析[J]. 核动力工程, 2021, 42(S2): 165-170. doi: 10.13832/j.jnpe.2021.S2.0165
Tu Teng, Gao Shixin, Zhou Yi, Chen Ping, Zhang Ruiqian, Yang Qingfeng, Liao Nan. Simulation Analysis of FeCrAl-UN Fuel Rod Performance[J]. Nuclear Power Engineering, 2021, 42(S2): 165-170. doi: 10.13832/j.jnpe.2021.S2.0165
Citation: Tu Teng, Gao Shixin, Zhou Yi, Chen Ping, Zhang Ruiqian, Yang Qingfeng, Liao Nan. Simulation Analysis of FeCrAl-UN Fuel Rod Performance[J]. Nuclear Power Engineering, 2021, 42(S2): 165-170. doi: 10.13832/j.jnpe.2021.S2.0165

FeCrAl-UN燃料棒性能模拟分析

doi: 10.13832/j.jnpe.2021.S2.0165
基金项目: 国家重点研发计划(2019YFB1901000)
详细信息
    作者简介:

    涂 腾(1990—),男,工程师,现从事核燃料元件设计及性能分析工作, E-mail: tuteng422@163.com

  • 中图分类号: TB535

Simulation Analysis of FeCrAl-UN Fuel Rod Performance

  • 摘要: FeCrAl包壳和UN芯块作为耐事故燃料(ATF)的重要选项,需要对其在压水堆环境中的性能进行分析。本文基于国内外最新的FeCrAl包壳和UN燃料物性数据和行为模型,对燃料性能分析程序FUPAC进行了二次开发,从而对不同线功率密度下FeCrAl/UN、FeCrAl/UO2、Zr-4/UN和Zr-4/UO2燃料棒堆内性能进行分析。通过对比,FeCrAl/UN燃料棒在芯块温度、裂变气体释放、燃料棒内压等方面具备良好性能,但由于FeCrAl包壳的蠕变率低,一旦包壳-芯块间隙闭合,包壳应力迅速增加,该现象需要在后续研究中加以关注。

     

  • 图  1  4根燃料棒的燃耗对比

    Figure  1.  Burn-up Comparison of 4 Fuel Rods

    图  2  不同燃料棒包壳-芯块间隙及芯块中心温度对比

    Figure  2.  Comparison of Cladding-Pellet Gap and Pellet Center Temperature Between Different Fuel Rods

    图  3  4根燃料棒的裂变气体释放率及燃料棒内压对比

    Figure  3.  Comparison of Fission Gas Release and Fuel Rod Internal Pressure Between 4 Fuel Rods

    图  4  线功率密度为18.82 kW/m时4根燃料棒的包壳应变和应力对比

    Figure  4.  Comparison of Cladding Strain and Stress Between 4 Fuel Rods(Linear Power Density is 18.82 kW/m)

    图  5  线功率密度为23.53 kW/m时4根燃料棒包壳应变和应力对比

    Figure  5.  Comparison of Cladding Strain and Stress between 4 Fuel Rods (Linear Power Density is 23.53 kW/m)

    表  1  燃料棒尺寸

    Table  1.   Dimension of Fuel Rods

    燃料棒类型FeCrAl/UNFeCrAl/UO2Zr-4/UNZr-4/UO2
    包壳厚度/mm0.350.350.570.57
    芯块直径/mm8.6328.6328.1928.192
    包壳-芯块间隙/mm0.084
    包壳外径/mm9.5
    下载: 导出CSV

    表  2  不同线功率密度下4根燃料棒性能对比

    Table  2.   Comparison of Fuel Performance of 4 Fuel Rods Under Different Linear Power Density

    性能线功率密度/( kW·m−1)FeCrAl/UNFeCrAl/UO2Zr-4/UNZr-4/UO2
    燃耗/[MW·d·t−1(U)] 18.82 32110 44995 35702 50029
    23.53 40137 56244 44628 62536
    包壳-芯块间隙/μm 18.82 20 0 0 0
    23.53 9 0 0 0
    芯块中心温度/℃ 18.82 446 869 451 913
    23.53 472 1120 491 1203
    裂变气体释放率/% 18.82 0.9 0.94 0.97 2.22
    23.53 1.11 10.29 1.27 16.22
    内压/MPa 18.82 5.842 7.318 7.973 8.862
    23.53 6.298 13.114 8.477 18.579
    包壳应变/μm 18.82 −0.65 −0.64 −1.17 −0.39
    23.53 −0.66 0 −1.05 0.34
    包壳应力/MPa 18.82 −133 143 2 74
    23.53 −124 245 8 87
    下载: 导出CSV
  • [1] BRAASE L, MAY W E. Advanced fuels campaign FY 2014 accomplishments report[R]. Idaho Falls: U. S. Department of Energy Office of Nuclear Energy Under DOE Idaho Operaton Office, 2014.
    [2] 涂腾,李文杰,李伟,等. UN燃料性能数值分析[J]. 核动力工程,2017, 38(6): 185-188.
    [3] 涂腾,李文杰,陈平,等. UN燃料稳态和瞬态性能初步分析[J]. 中国核电,2017, 10(1): 335-340.
    [4] MATTHEWS R B. Irradiation performance of nitride fuels[R]. Washington: Los Alamos National Laboratory, 1993.
    [5] WU X, KOZLOWSKI T, HALES J D. Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions[J]. Annals of Nuclear Energy, 2015, 85: 763-775. doi: 10.1016/j.anucene.2015.06.032
    [6] BATES J F, STRAALSUND J L. An empirical representation of irradiation-induced swelling of solution treated type 304 stainless steel[J]. Nuclear Technology, 1972, 14(3): 292-298. doi: 10.13182/NT72-A31119
    [7] SWEET R, GEORGE N, TERRANI K, et al. BISON Fuel Performance Analysis of FeCrAl cladding with updated properties[R]. Oak Ridge: Oak Ridge National Laboratory, 2016.
    [8] HAYES S L, THOMAS J K, PEDDICORD K L. Material property correlations for uranium mononitride: II. Mechanical properties[J]. Journal of Nuclear Materials, 1990, 171(2-3): 271-288. doi: 10.1016/0022-3115(90)90375-W
    [9] HAYES S L, ThOMAS J K, PEDDICORD K L. Material property correlations for uranium mononitride: I. Physical properties[J]. Journal of Nuclear Materials, 1990, 171(2-3): 262-270. doi: 10.1016/0022-3115(90)90374-V
    [10] HAYES S L, THOMAS J K, PEDDICORD K L. Material property correlations for uranium mononitride: III. Transport properties[J]. Journal of Nuclear Materials, 1990, 171(2-3): 289-299. doi: 10.1016/0022-3115(90)90376-X
    [11] HAYES S L, THOMAS J K, PEDDICORD K L. Material property correlations for uranium mononitride: IV. Thermodynamic properties[J]. Journal of Nuclear Materials, 1990, 171(2-3): 300-318. doi: 10.1016/0022-3115(90)90377-Y
    [12] EL-GENK M S, ROSS S B, MATTHEWS R B. Uranium nitride fuel swelling and thermal conductivity correlations[C]//Proceedings of the Transactions of the Fourth Symposium on Space Nuclear Power Systems. 1987: 313-317
    [13] STORMS E K. An equation which describes fission gas release from UN reactor fuel[J]. Journal of Nuclear Materials, 1988, 158: 119-129. doi: 10.1016/0022-3115(88)90161-4
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  319
  • HTML全文浏览量:  71
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 录用日期:  2021-12-06
  • 修回日期:  2021-10-22
  • 刊出日期:  2021-12-29

目录

    /

    返回文章
    返回